• Title/Summary/Keyword: iterative schemes

Search Result 170, Processing Time 0.02 seconds

Study on the efficient dynamic system condensation (동적 해석의 효율적 축소 기법에 관한 연구)

  • Baek, Sung-Min;Cho, Meang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.631-636
    • /
    • 2007
  • Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the, we proposed a two-level condensation scheme(TLCS) for the construction of a reduced system. In first step, the of candidate elements by energy estimation, Rayleigh quotient, through Ritz vector calculation, and next, the primary degrees of freedom is selected by sequential elimination from the degrees of freedom connected the candidate elements in the first step. In the present study, we propose TLCS combined with iterative improved reduced system(IIRS) to increase accuracy of higher modes intermediate range. Also, it possible to control the accuracy of the eigenvalues and eigenmodes of the reduced system. Numerical examples demonstrate performance of proposed method.

  • PDF

Strong Convergence Theorems by Modified Four Step Iterative Scheme with Errors for Three Nonexpansive Mappings

  • JHADE, PANKAJ KUMAR;SALUJA, AMARJEET SINGH
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.667-678
    • /
    • 2015
  • The aim of this paper is to prove strong convergence theorem by a modified three step iterative process with errors for three nonexpansive mappings in the frame work of uniformly smooth Banach spaces. The main feature of this scheme is that its special cases can handle both strong convergence like Halpern type and weak convergence like Ishikawa type iteration schemes. Our result extend and generalize the result of S. H. Khan, Kim and Xu and many other authors.

STRONG CONVERGENCE THEOREMS FOR GENERALIZED VARIATIONAL INEQUALITIES AND RELATIVELY WEAK NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Liu, Ying
    • East Asian mathematical journal
    • /
    • v.28 no.3
    • /
    • pp.265-280
    • /
    • 2012
  • In this paper, we introduce an iterative sequence by using a hybrid generalized $f$-projection algorithm for finding a common element of the set of fixed points of a relatively weak nonexpansive mapping an the set of solutions of a generalized variational inequality in a Banach space. Our results extend and improve the recent ones announced by Y. Liu [Strong convergence theorems for variational inequalities and relatively weak nonexpansive mappings, J. Glob. Optim. 46 (2010), 319-329], J. Fan, X. Liu and J. Li [Iterative schemes for approximating solutions of generalized variational inequalities in Banach spaces, Nonlinear Analysis 70 (2009), 3997-4007], and many others.

Allocation in Multi-way Stratification by Linear Programing

  • NamKung, Pyong;Choi, Jae-Hyuk
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.327-341
    • /
    • 2006
  • Winkler (1990, 2001), Sitter and Skinner (1994), Wilson and Sitter (2002) present a method which applies linear programing to designing surveys with multi-way stratification, primarily in situation where the desired sample size is less than or only slightly larger than the total number of stratification cells. A comparison is made with existing methods both by illustrating the sampling schemes generated for specific examples, by evaluating sample mean, variance estimation, and mean squared errors, and by simulating sample mean for all methods. The computations required can, however, increase rapidly as the number of cells in the multi-way classification increase. In this article their approach is applied to multi-way stratification using real data.

A feature-based motion parameter estimation using bi-directional correspondence scheme (쌍방향 대응기법을 이용한 특징점 기반 움직임 계수 추정)

  • 서종열;김경중;임채욱;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2776-2788
    • /
    • 1996
  • A new feature-based motion parameter estimation for arbitrary-shaped regions is proposed. Existing motion parameter estimation algorithms such as gradient-based algorithm require iterations that are very sensitive to initial values and which often converge to a local minimum. In this paper, the motion parameters of an object are obtained by solving a set of linear equations derived by the motion of salient feature points of the object. In order to estimate the displacement of the feature points, a new process called the "bi-directional correspondence scheme" is proposed to ensure the robjstness of correspondence. The proposed correspondence scheme iteratively selects the feature points and their corresponding points until unique one-to-one correspondence is established. Furthermore, initially obtained motion paramerters are refined using an iterative method to give a better performance. The proposed algorithm can be used for motion estimationin object-based image coder, and the experimental resuls show that the proposed method outperforms existing schemes schemes in estimating motion parameters of objects in image sequences.sequences.

  • PDF

On learning control of robot manipulator including the bounded input torque (제한 입력을 고려한 로보트 매니플레이터의 학습제어에 관한 연구)

  • 성호진;조현찬;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.58-62
    • /
    • 1988
  • Recently many adaptive control schemes for the industrial robot manipulator have been developed. Especially, learning control utilizing the repetitive motion of robot and based on iterative signal synthesis attracts much interests. However, since most of these approaches excludes the boundness of the input torque supplied to the manipulator, its effectiveness may be limited and also the full dynamic capacity of the robot manipulator can not be utilized. To overcome the above-mentioned difficulties and meet the desired performance, we propose an approach which yields the effective learning control schemes in this paper. In this study, some stability conditions derived from applying the Lyapunov theory to the discrete linear time-varying dynamic system are established and also an optimization scheme considering the bounded input torque is introduced. These results are simulated on a digital computer using a three-joint revolute manipulator to show their effectiveness.

  • PDF

Optimal Shape Design of Container in HIPing Process by the Finite Element Method (유한요소법을 이용한 HIPing 공정에서의 컨테이너 형상 최적설계)

  • 전경달
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.257-260
    • /
    • 1999
  • It is very important to design the shape of container in HIPing process since the final shape and relative density distribution of the product are decisively dependent on the shape of container. A derivative based approach to determine the shape of container in HIPing process is presented. In this approach the optimal design problem is formulated on the basis of the finite element process. The process model the formulation for process optimal design and the schemes for the evaluation of the design sensitivity and an iterative procedure for optimization are described. In comparison with finite difference scheme the validity of the schemes for the evaluation of the design sensitivity is examined.

  • PDF

Comparison of Time Implicit Symmetric Gauss-Seidel Iterative Schemes for Computation of Hypersonic Nonequilibrium Flow

  • Lee, Chang Ho;Park, Seung O
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • The time implicit point SGS scheme is applied to compute hypersonic viscous flows in thermochemical nonequilibrium. The performance of the point SGS scheme is then compared with those of the line SGS and the LU-SGS schemes. Comparison of convergence histories with the effect of multiple forward and backward sweeps are made for the flow over a 2D cylinder experimentally studied by Hornung and the flow over a hemisphere at conditions corresponding to the peak heating condition during the reentry flight of an SSTO vehicle. Results indicate that the point SGS scheme with multiple sweeps is as robust and efficient as the line SGS scheme. For the point SGS and the LU-SGS scheme, the rate of improvement in convergence is largest with two sweep cycles. However, for the line SGS scheme, it is found that more than one sweep cycle deteriorates the convergence rate.

  • PDF

Development of a Consistent General Order Nodal Method for Solving the Three-Dimensional, Multigroup Neutron Diffusion Equation

  • Kim, Hyun-Dae-;Oh, Se-Kee
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.11a
    • /
    • pp.99-102
    • /
    • 1993
  • A consistent general order nodal method for solving the three-dimensional neutron diffusion equation in (x-y-z) geometry has been derived by using a weighted integral technique and expanding the spatial variable by the Legendre orthogonal series function. The equation set derived can be converted into any order nodal schemes. It forms a compact system for general order of nodal moments. The method utilizes fewer unknown variables in the schemes for iterative-convergence solution than other nodal methods listed in the literatures, and because the method utilizes the analytic solutions of the transverse-integrated one dimensional equations and a consistent approximation for a given spatial variable through all the solution procedures, which renders the use of an approximation for the transverse leakages no longer necessary, we can expect extremely accurate solutions and the solution would converge exactly when the mesh width is decreased or the approximation order is increased.

  • PDF

WEAK AND STRONG CONVERGENCE THEOREMS FOR THE MODIFIED ISHIKAWA ITERATION FOR TWO HYBRID MULTIVALUED MAPPINGS IN HILBERT SPACES

  • Cholamjiak, Watcharaporn;Chutibutr, Natchaphan;Weerakham, Siwanat
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.767-786
    • /
    • 2018
  • In this paper, we introduce new iterative schemes by using the modified Ishikawa iteration for two hybrid multivalued mappings in a Hilbert space. We then obtain weak convergence theorem under suitable conditions. We use CQ and shrinking projection methods with Ishikawa iteration for obtaining strong convergence theorems. Furthermore, we give examples and numerical results for supporting our main results.