• Title/Summary/Keyword: isotropic turbulence

Search Result 52, Processing Time 0.026 seconds

A Study on the Generation of Initial Turbulent Velocity Field with Non-zero Velocity Derivative Skewness (속도미분비대칭도를 고려한 초기난류 속도장 생성방법 연구)

  • Koh Bum-Yong;Park Seung-O
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.819-822
    • /
    • 2002
  • It is necessary for the numerical simulation of 3-dimensional incompressible isotropic decaying turbulence to construct 3-dimensional initial velocity field which resembles the fully developed turbulence. Although the previous velocity field generation method proposed by Rogallo(1981) satisfies continuity equation and 3-dimensional energy spectrum, it has limitation, as indicated in his paper, that it does not produce the higher velocity moments(e. g. velocity derivative skewness) characteristic of real turbulence. In this study, a new velocity field generation method which is able to control velocity derivative skewness of initial velocity field is proposed. Brief descriptions of the new method and a few parameters which is used to control velocity derivative skewness are given. A large eddy simulation(LES) of isotropic decaying turbulence using dynamic subgrid-scale model is carried out to evaluate the performance of the initial velocity field generated by the new method. It was shown that the resolved turbulent kinetic energy decay curve and the resolved enstrophy decay curve from the initial field of new method were more realistic than those from the initial field of Rogallo's method. It was found that the dynamic model coefficient from the former was initially half the stationary value and experienced relatively short transition period, though that from the latter was initially zero and experienced relatively longer transition period.

  • PDF

BEHAVIOR OF MICROBUBBLES IN ISOTROPIC TURBULENCE (등방성 난류에서의 마이크로버블 거동)

  • Shim, G.H.;Lee, S.G.;Lee, C.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.46-53
    • /
    • 2016
  • Direct numerical simulation is conducted to observe the behavior of microbubbles in isotropic turbulence. Navier-Stokes equation and the motion of equation for microbubbles are solved with periodic boundary condition in a cube domain. Vorticity contour, enstrophy ratio, relative reduction of bubble rise velocity, and the closest distance of particles are investigated for various Stokes numbers and gravity factors to understand clustering of microbubbles. Also, clustering due to the effect of the lift force is investigated.

Transported PDF Model for Turbulent Nonpremixed Flames (수송 확률밀도함수모델을 이용한 비예혼합 난류화염장 해석)

  • Lee, Jeong-Won;Seok, Joon-Ho;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.32-41
    • /
    • 2009
  • The transported probability density function model combined with the consistent finite volume (FV) method has been applied to simulate the turbulent bluff-body reacting flows. To realistically account for the non-isotropic turbulence effects on the turbulent bluff-body reacting flows, the present PDF transport approach is based on the joint velocity- turbulent frequency-composition PDF formulation. The evolution of the fluctuating velocity of a particle is modeled by a simplified Langevin equation and the particle turbulence frequency is represented by the modified Jayesh - Pope model. Effects of molecular diffusion are represented by the interaction by exchange with the mean (IEM) mixing model. To validate this hybrid FV/PDF transport model, the numerical results are compared with experimental data for the turbulent bluff-body reacting flows.

  • PDF

Performance Assessment of Turbulence Models for the Prediction of Tip Leakage Flow in an Axial-Flow Turbomachinery (축류형 유체기계에서 익단 누설 유동 해석을 위한 난류 모델 성능 평가)

  • Lee, Gong-Hee;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1655-1666
    • /
    • 2003
  • It is experimentally well-known that high anisotropies of the turbulent flow field are dominant inside the tip leakage vortex, which is attributable to a substantial proportion of the total loss and constitutes one of the dominant mechanisms of the noise generation. This anisotropic nature of turbulence invalidates the use of the conventional isotropic eddy viscosity turbulence models based on the Boussinesq assumption. In this study, to check whether an anisotropic turbulence model is superior to the isotropic ones or not, the results obtained from the steady-state Reynolds averaged Navier-Stokes simulations based on the RNG k-$\varepsilon$ model and the Reynolds stress model (RSM) are compared with experimental data for two test cases: a linear compressor cascade and a forward-swept axial-flow fan. Through this comparative study of turbulence models, it is clearly shown that the RSM, which can express the production term and body-force term induced by system rotation without introducing any modeling, should be used to predict quantitatively the complex tip leakage flow, especially in the rotating environment.

Coherent Structure Extraction from 3-Dimensional Isotropic Turbulence Velocity Field Using Discrete Wavelet Transform (이산 Wavelet 변환을 이용한 3차원 등방성 난류속도장의응집구조 추출)

  • Lee, Sang-Hwan;Jung, Jae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1032-1041
    • /
    • 2004
  • In this study we decompose the 3-dimensional velocity field of isotropic turbulent flow into the coherent and the incoherent structure using the discrete wavelet. It is shown that the coherent structure, 3% wavelet modes, has 98% energy and 88% enstrophy and its statistical characteristics are almost same as the original turbulence structure. And it is confirmed that the role of the coherent structure is that it produces the turbulent kinetic energy at the inertia range then transfers energy to the dissipation range. The incoherent structure, with residual wavelet modes, is uncorrelated and has the Gaussian probability density function but it dissipates the kinetic energy in dissipation range. On the procedure, we propose a new but easy way to get the threshold by applying the energy partition percentage concept about coherent structure. The vorticity field extracted from the wavelet-decomposed velocity field has the same structure as the result of the precedent studies which decomposed vorticity field directly using wavelet. Therefore it has been shown that velocity and vorticity field are on the interactive condition.

Linear estimation of conditional eddies in turbulence (난류구조의 조건와류에 대한 선형적 평가)

  • 성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1175-1188
    • /
    • 1988
  • Linear estimation in isotropic turbulence is examined to approximate conditional averages in the form of fluctuating velocity fields conditioned on local velocity. The conditional flow fields and their associated vorticity field are computer using experimental data [Van Atta and Chen] and energy spectrum model [Driscoll and Kennedy]. It appears that ring vorticies could be the dominant structure. Due to the extremely large vorticity in the viscous region of a conditional ring vortex, the energy spectrum model can be used appropriately by changing the Reynolds number. The hairpin vortex could be detected by combining vorticies in isotropic field with an anisotropic orientation imbedded in uniform mean shear flow and this is consistent with other studies [Kim and Moin].

Modal acoustic power of broadband noise by interaction of a cascade of flat-plate airfoils with inflow turbulence (평판 에어포일 캐스케이드와 입사 난류의 상호작용에 의한 광대역 소음의 모달 음향 파워)

  • Cheong, Cheol-Ung;Jurdic, Vincent;Joseph, Phillip
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1467-1475
    • /
    • 2007
  • This paper investigates the modal acoustic power by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. Basic formulation for the acoustic power upstream and downstream is based on the analytical theory of Smith and its generalization due to Cheong et al. The acoustic power spectrum has been expressed as the sum of cut-on acoustic modes, whose modal power is the product of three terms: a turbulence series, an upstream or downstream power factor and an upstream or downstream acoustic response function. The effect of these terms in the modal acoustic power has been examined. For isotropic turbulence gust, the turbulent series are only reducing factor of the modal acoustic power. The power factor tends to reduce the modal acoustic power in the upstream direction, although the power factor is liable to increase the modal acoustic power in the downstream direction. The modes close to cut-off are decreasing strongly, especially in the downstream direction. Therefore the modes close to cut-off don't contribute highly to the radiated acoustic power in the downstream direction, although the modal acoustic pressure is high for these modes.

  • PDF

Characteristics of Modal Acoustic Power of Broadband Noise by Interaction of a Cascade of Flat-plate Airfoils with Inflow Turbulence (평판 에어포일 캐스케이드와 입사 난류의 상호작용에 의한 광대역 소음의 모달 음향 파워 특성)

  • Cheong, Cheol-Ung;Jurdic, Vincent;Joseph, Phillip
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • This paper investigates the modal acoustic power by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. Basic formulation for the acoustic power upstream and downstream is based on the analytical theory of Smith and its generalization due to Cheong et al. The acoustic power spectrum has been expressed as the sum of cut-on acoustic modes, whose modal power is the product of three terms: a turbulence series, an upstream or downstream power factor and an upstream or downstream acoustic response function. The effect of these terms in the modal acoustic power has been examined. For isotropic turbulence gust, the turbulent series are only reducing factor of the modal acoustic power. The power factor tends to reduce the modal acoustic power in the upstream direction, although the power factor is liable to increase the modal acoustic power in the downstream direction. The modes close to cut-off are decreasing strongly, especially in the downstream direction. Therefore the modes close to cut-off don't contribute highly to the radiated acoustic power in the downstream direction, although the modal acoustic pressure is high for these modes.

On behavior of settling heavy particles in isotropic turbulence (등방성 난류에서 침강하는 무거운 입자의 거동)

  • Jung, Jae-Dal;Yeo, Kyoung-Min;Lee, Chang-Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.437-440
    • /
    • 2006
  • Particle suspension is frequently observed in many natural flows such as in the atmosphere and the ocean as well as in various engineering flows. Recently, airborne micro or nano-scale particles in atmosphere attract much attention from environmental society since small particle cause serious environmental problems in the industrialized areas. Also, the characteristics of such heavy particles' behavior is quite different from its fluid particles because the inertia force and buoyance force acting on the heavy particles are different than those acting on fluid particles. Therefore, our studies is to investigate the characteristics of the behavior of heavy particles considering the inertia effect with or without gravity effect, but do not consider modification of turbulence by the particles, that is one-way interaction. We carried out direct numerical simulation of isotropic turbulence with particles under the Stokes drag assumption for a spherical particle. These results can be used in the development of a stochastic model for predicting particle's behavior.

  • PDF