• 제목/요약/키워드: isotropic thermoelastic

검색결과 57건 처리시간 0.026초

Analysis of wave motion in an anisotropic initially stressed fiber-reinforced thermoelastic medium

  • Gupta, Raj Rani;Gupta, Rajani Rani
    • Earthquakes and Structures
    • /
    • 제4권1호
    • /
    • pp.1-10
    • /
    • 2013
  • The present investigation deals with the analysis of wave motion in the layer of an anisotropic, initially stressed, fiber reinforced thermoelastic medium. Secular equations for symmetric and skew-symmetric modes of wave propagation in completely separate terms are derived. The amplitudes of displacements and temperature distribution were also obtained. Finally, the numerical solution was carried out for Cobalt and the dispersion curves, amplitudes of displacements and temperature distribution for symmetric and skew-symmetric wave modes are presented to evince the effect of anisotropy. Some particular cases are also deduced.

Edge wave propagation in an Electro-Magneto-Thermoelastic homogeneous plate subjected to stress

  • Kakar, Rajneesh;Kakar, Shikha
    • Structural Engineering and Mechanics
    • /
    • 제53권6호
    • /
    • pp.1201-1214
    • /
    • 2015
  • This paper introduces the combined effect of electric field, magnetic field and thermal field on edge wave propagating in a homogeneous isotropic prestressed plate of finite thickness and infinite length. The dispersion relation of edge wave has been obtained by using classical dynamical theory of thermoelasticity. The phase velocity has been computed and shown graphically for various initial stress parameter, electro-magneto parameter, electric parameter and thermoelastic coupling parameter.

Modelling of magneto-thermoelastic plane waves at the interface of two prestressed solid half-spaces without energy dissipation

  • Kakar, Rajneesh;Kakar, Shikha
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1299-1323
    • /
    • 2015
  • A model for reflection and refraction of magneto-thermoelastic SV-waves at the interface of two transversely isotropic and homogeneous solid half spaces under initial stress by applying classical dynamical theory of thermoelasticity is purposed. The reflection and refraction coefficients of SV-waves are obtained with ideal boundary conditions for SV-wave incident on the solid-solid interface. The effects of magnetic field, temperature and initial stress on the amplitude ratios after numerical computations are shown graphically with MATLAB software for the particular model.

Disturbance due to internal heat source in thermoelastic solid using dual phase lag model

  • Ailawalia, Praveen;Singla, Amit
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.341-354
    • /
    • 2015
  • The dual-phase lag heat transfer model is employed to study the problem of isotropic generalized thermoelastic medium with internal heat source. The normal mode analysis is used to obtain the exact expressions for displacement components, force stress and temperature distribution. The variations of the considered variables through the horizontal distance are illustrated graphically. The results are discussed and depicted graphically.

Rayleigh waves in anisotropic magnetothermoelastic medium

  • Kumar, Rajneesh;Sharma, Nidhi;Lata, Parveen;Abo-Dahab, S.M.
    • Coupled systems mechanics
    • /
    • 제6권3호
    • /
    • pp.317-333
    • /
    • 2017
  • The present paper is concerned with the investigation of Rayleigh waves in a homogeneous transversely isotropic magnetothermoelastic medium with two temperature, in the presence of Hall current and rotation. The formulation is applied to the thermoelasticity theories developed by Green-Naghdi theories of Type-II and Type-III. Secular equations are derived mathematically at the stress free and thermally insulated boundaries. The values of Determinant of secular equations, phase velocity and Attenuation coefficient with respect to wave number are computed numerically. Cobalt material has been chosen for transversely isotropic medium and magnesium material is chosen for isotropic solid. The effects of rotation, magnetic field and phase velocity on the resulting quantities and on particular case of isotropic solid are depicted graphically. Some special cases are also deduced from the present investigation.

Dynamical behavior of generalized thermoelastic diffusion with two relaxation times in frequency domain

  • Sharma, Nidhi;Kumar, Rajneesh;Ram, Paras
    • Structural Engineering and Mechanics
    • /
    • 제28권1호
    • /
    • pp.19-38
    • /
    • 2008
  • A general solution to the field equations of homogeneous isotropic generalized thermoelastic diffusion with two relaxation times (Green and Lindsay theory) has been obtained using the Fourier transform. Assuming the disturbances to be harmonically time.dependent, the transformed solution is obtained in the frequency domain. The application of a time harmonic concentrated and distributed loads have been considered to show the utility of the solution obtained. The transformed components of displacement, stress, temperature distribution and chemical potential distribution are inverted numerically, using a numerical inversion technique. Effect of diffusion on the resulting expressions have been depicted graphically for Green and Lindsay (G-L) and coupled (C-T) theories of thermoelasticity.

Generation of Thermoelastic Waves by Irradiating a Metal Slab with a Line-Focused Laser Pulse

  • Yoo, Jae-Gwon;Baik, S.H.
    • 비파괴검사학회지
    • /
    • 제26권3호
    • /
    • pp.181-189
    • /
    • 2006
  • A 2D finite-element numerical simulation has been developed to investigate the generation of ultrasonic waves in a homogeneous isotropic elastic slab under a line-focused laser irradiation. Discussing the physical processes involved in the thermoelastic phenomena, we describe a model for the pulsed laser generation of ultrasound in a metal slab. Addressing an analytic method, on the basis of an integral transform technique, for obtaining the solutions of the elastodynamic equation, we outline a finite element method for a numerical simulation of an ultrasonic wave propagation. We present the numerical results for the displacements and the stresses generated by a line-focused laser pulse on the surface of a stainless steel slab.

Thermoelastic damping in generalized simply supported piezo-thermo-elastic nanobeam

  • Kaur, Iqbal;Lata, Parveen;Singh, Kulvinder
    • Structural Engineering and Mechanics
    • /
    • 제81권1호
    • /
    • pp.29-37
    • /
    • 2022
  • The present paper deals with the application of one dimensional piezoelectric materials in particular piezo-thermoelastic nanobeam. The generalized piezo-thermo-elastic theory with two temperature and Euler Bernoulli theory with small scale effects using nonlocal Eringen's theory have been used to form the mathematical model. The ends of nanobeam are considered to be simply supported and at a constant temperature. The mathematical model so formed is solved to obtain the non-dimensional expressions for lateral deflection, electric potential, thermal moment, thermoelastic damping and frequency shift. Effect of frequency and nonlocal parameter on the lateral deflection, electric potential, thermal moment with generalized piezothermoelastic theory are represented graphically using the MATLAB software. Comparisons are made with the different theories of thermoelasticity.

Representation of fundamental solution and vibration of waves in photothermoelastic under MGTE model

  • Rajneesh Kumar;Nidhi Sharma;Supriya Chopra;Anil K. Vashishth
    • Ocean Systems Engineering
    • /
    • 제13권2호
    • /
    • pp.123-146
    • /
    • 2023
  • In this paper, Moore-Gibson-Thompson theory of thermoelasticity is considered to investigate the fundamental solution and vibration of plane wave in an isotropic photothermoelastic solid. The governing equations are made dimensionless for further investigation. The dimensionless equations are expressed in terms of elementary functions by assuming time harmonic variation of the field variables (displacement, temperature distribution and carrier density distribution). Fundamental solutions are constructed for the system of equations for steady oscillation. Also some preliminary properties of the solution are explored. In the second part, the vibration of plane waves are examined by expressing the governing equation for two dimensional case. It is found that for the non-trivial solution of the equation yield that there exist three longitudinal waves which advance with the distinct speed, and one transverse wave which is free from thermal and carrier density response. The impact of various models (i)Moore-Gibson-Thomson thermoelastic (MGTE)(2019), (ii) Lord and Shulman's (LS)(1967) , (iii) Green and Naghdi type-II(GN-II)(1993) and (iv) Green and Naghdi type-III(GN-III)(1992) on the attributes of waves i.e., phase velocity, attenuation coefficient, specific loss and penetration depth are elaborated by plotting various figures of physical quantities. Various particular cases of interest are also deduced from the present investigations. The results obtained can be used to delineate various semiconductor elements during the coupled thermal, plasma and elastic wave and also find the application in the material and engineering sciences.

Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory

  • Bouchafa, Ali;Bouiadjra, Mohamed Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1493-1515
    • /
    • 2015
  • A new refined hyperbolic shear deformation theory (RHSDT), which involves only four unknown functions as against five in case of other shear deformation theories, is presented for the thermoelastic bending analysis of functionally graded sandwich plates. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The sandwich plate faces are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity, Poisson's ratio of the faces, and thermal expansion coefficients are assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic ceramic material. Several kinds of sandwich plates are used taking into account the symmetry of the plate and the thickness of each layer. The influences played by the transverse shear deformation, thermal load, plate aspect ratio and volume fraction distribution are studied. Numerical results for deflections and stresses of functionally graded metal-ceramic plates are investigated. It can be concluded that the proposed theory is accurate and simple in solving the thermoelastic bending behavior of functionally graded plates.