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Generation of Thermoelastic Waves by Iradiating a Metal Slab
with a Line-Focused Laser Pulse

Jacgwon Yoo*T and S. H. Baik*

Abstract A 2D finite-element numerical simulation has been developed to investigate the generation of ultrasonic
waves in a homogeneous isotropic elastic slab under a line-focused laser irradiation. Discussing the physical
processes involved in the thermoelastic phenomena, we describe a model for the pulsed laser generation of
ultrasound in a metal slab. Addressing an analytic method, on the basis of an integral transform technique, for
obtaining the solutions of the elastodynamic equation, we outline a finite element method for a numerical
simulation of an ultrasonic wave propagation. We present the numerical results for the displacements and the
stresses generated by a line-focused laser pulse on the surface of a stainless steel slab.
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1. Introduction

Laser-based ultrasonics has several advantages

in  nondestructive evaluation

testing  and
(NDT&E) over many conventional transducers,
such as the ability to achieve a broad-banded
excitation with a high signal reproducibility and
the possibility of generating a truly remote
source of ultrasound by optical means on hot or
rough samples and in hostile environments. The
characteristics of laser-based ultrasonic waves
depend strongly on the optical penetration, the
thermal diffusion, the elastic properties, and the
geometry of materials, as well as the parameters
of the exciting laser pulse, including the shape,
the focus spot, and the pulse width (Scruby and
Drain, 1990). In conjunction with NDT&E, the
laser-generated

ultrasound  also has many

industrial applications in the areas of laser
ultrasonic velocity and attenuation measurements
to determine the elastic constants and grain sizes

of materials.

A number of different physical processes may
take place when a solid surface is illuminated by
a laser pulse. Typically, there are two regions for
a laser generation of an ultrasound in a solid:
thermoelastic (typical power densities <107 Wem™
for a metal in the near infrared/visible wavelength
region) and ablative (typical power densities
>10"Wém 2 for a metal in the near infrared/visible
wavelength region). In the thermoelatic region, a
low-energy laser pulse heats the surface of the
material, and the transient thermal expansion of
the near surface volume launches the compression,
shear, and Rayleigh waves into the sample. In the
ablative region, on the other hand, a higher
energy density laser pulse yields a partial ablation
of the target surface and an ionization of the
ablative material. The laser-induced plasma
expands away from the surface with very high
pressures so as to enhance the generation of the
compression and Rayleigh waves in this region.
However, the ablative region's production of an

ultrasound results in some surface damage, which
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may make it inappropriate for a use in certain
applications.

Recently, on the basis of integral transform
methods, we studied the analytic solutions of the
transient elastodynamic equations to obtain the
time domain displacements and stresses of a
surface. We
analysis formulation to simulate the generation of

sample developed a numerical
thermoelastic surface waves in a homogeneous
isotropic elastic half-space under a line-focused
laser irradiation (Yoo et al., 2006), where the
inverse transforms are numerically calculated.
turned out that the analytical
approach is hopelessly difficult to apply in the

However, it

case of complex geometries, even in the simple
case of a slab, because it demands numerical
evaluations of the multiple integrations. Since it
is well-known that the finite element method
(FEM) (Ludwig and Lord, 1988; Kishore et al.,
2000; Zerwer et al., 2003) is much more suitable
in dealing with arbitrary shapes than other
numerical methods, we carried out numerical
simulations based on the 2-dimensional finite
element method to investigate the generation and

propagation of ultrasonic waves in a metal slab.
2. Theoretical Formulation

At lower incident powers of the laser pulse,
the physical processes include a heating and the
generation of thermal and elastic waves in a
material. For the thermal process, a classical
thermal diffusion equation implies that the heat
disturbance
propagation velocity. Since such a behavior is

can propagate with an infinite
physically unacceptable, we introduce a hyperbolic
equation of a heat transport with a resulting finite
speed of heat propagation (typically somewhat
larger than the longitudinal wave speed c;). The
latter feature provides a confidence that no
unphysical behavior is being introduced by using
the classical thermoelasticity, with its associated
"infinite" speed of a heat propagation, though no
appreciable effect on the numerical results has

been found; it also allows for a simplification of
certain analytical results (Yoo et al., 2006, 2005;
Ozisik and Vick, 1984; Frankel et al., 1985).

y
i Laser Pulse

X

Fig. 1 Vector plots of the wavefronts radiating into

the SUS316L slab at ¢t =1 us. Note that
only the right half part from the laser
irradiation point is shown.

We consider a finite slab-type target that is
composed of a medium with constant thermal
properties and insulated boundaries. From time
t=0, the medium is irradiated by a laser pulse
surface. The
diffusion

equation for the temperature 6 is written as

depositing heat on its front

hyperbolic  time-dependent  thermal

V- —— =, )

where ¢ is the heat source due to the laser
irradiation, and the parameters involved in the
thermal process are listed in Table 1. The
medium in which the elastic pulses are generated
is assumed to be homogeneous and isotropic. For
an isotropic elastic body under laser irradiation,
the displacement w satisfies the elastodynamic
equation:

2,
1V it O+ ) V(Y - u) = pZ—tnge, @

B=(8\+2u)a is the thermoacoustic

coupling constant. The stress tensor ¢ is related

where

to the displacement by

0=V - ul+ p(Vutuv)— BIAS, (3)

where A represents the temperature difference.



Journal of the KSNT Vol. 26 No. 3 183

Time [us]

Fig. 2 Plot of the vertical displacement of the top
surface of the SUS316L slab versus time.
The distances measure the detection points
from the center of the taser source.

In the Cartesian coordinates (a:,y,z) , a
suitable  expression for the heat deposition over

the irradiation zone of the laser pulse is
e v

Y

q=F(1-R)

Fla)g(t), )

where £ is the energy of the laser pulse per
unit length, R is the surface reflectivity, and
v is the penetration depth. If the pulse energy is
completely absorbed at the surface (v—0), we
can set e_y/7/7:5(y) . Here, f(z) and g(t)
are the spatial and the temporal distributions of
the laser pulse and they can be written as

I S
f(I) - \/'2? Jn € El (5)
3
g(t) =27 )
v

where w is the Gaussian width, and v is the
pulse duration time of the laser beam.

The elastic displacement is obtained through
a solution of the usual wave equations for the
displacement potentials. The displacement vector
u can be expressed in terms of a dilational
scalar potential ¢ and an equivoluminal vector
potential ¥ as

w=Vp+ VX, ™

Then, Eq. (2) will be satisfied if ¢ and 7 are
solutions of the following wave equations:
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where ¢, V(A +2u)/p and co_Vp/p are

the speeds of the longitudinal and the transverse
waves, respectively.

The elastodynamics involves the solution of
boundary  value problems with boundary
conditions of the mixed type, in which the
displacements are specified on one part of the
boundary and those of the normal derivative on
the remaining portion. For an insulated material,
the boundary condition on the surface (8) of

the medium is

n - Vo(z,t)=0 for x€8, (10)
and the initial conditions are
6(z,0) =6, and 2‘9_(;%&: 0, (1)

where n denotes a unit vector normal to the
boundary surface S. The boundary conditions for
the elastodynamic equations are such that the
stresses are zero on the surface (z€.5) :

au’l aul‘
VT WA

ou ou ou,
= Y —Y_3A0=0. (13)
- )\(Bx + 5 )+2p, Py BAO=0

The initial conditions for the elastodynamic
equFations are such that the displacements are
zero at £ =0.
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Fig. 3 Vertical displacement of the top surface of

the SUS316L slab versus time at the
distance 2.5mm from the center of the
faser source.
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Since integral transforms may often reduce
the partial differential equations to a simpler
form, spatial Fourier and temporal Laplace
transform methods are applied to the analysis and
to the solutions of the boundary-value problems
which involve a time dependence. The Fourier
transform is the prototype of the most widely

used class of unitary integral operators,
H(z,s) =f h(z,t)e” *dt. (14)
0

The Laplace transformation is similarly
designed to extend the advantages of a unitary
transformation to a class of functions which are

exponentially bounded,
17(1?78) = 51;/ / H(z,s)e P *dady. (15)

Then, the integral transform of the line- focused
laser source ¢ reads

= BE(1—-R)-
Q= mf(P)G(S), (16)

where G is the temporal Laplace transform of

g(t) and f is the spatial Fourier transform of

flz),

o L et
f=5ze . (17
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Fig. 4 Horizontal displacement of the top surface
of the SUS316L slab versus time at the
distance 2.5mm from the center of the
laser source.

Successive applications of Eqs. (14) and (15)
to the hyperbolic heat equation and the wave
equations for the displacement potentials enable
one to find the analytic solutions in the integral
transformed form, ie., in a multiple integral form
of the displacements and stresses. However, it is
almost impossible to obtain inversely transformed
analytic solutions through multiple integral
transforms, so the inverse transformations are
usually calculated by using a numerical inverse
method. Note that the integral of the inverse
Fourier transform can be numerically evaluated
by making use of Filon's method (Yoo et al,
2004; Abramowitz and Stegun, 1972), which is
very adequate for rapidly oscillatory functions
over semi-infinite intervals, and that the numerical
inversion of the Laplace transform can be
performed on the basis of the Crump-Durbin

technique (Crump, 1976; Durbin, 1974).

0.05 T T

Arbitrary Unit
o’ o o
8 8 B

et

=]
L
:

o

Q

=3
=Y

20 40 60
Frequency (MHz)

Fi

g. 5 Plot of spectrum of Fig. 5.
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Fig. 6 Stress tensor o, at the top surface of the

SUS316L slab versus time at the distance
2.5mm from the center of the laser source.
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3. Finite Flement Method and Numerical Results

The numerical solution process based on the
finite element method begins by meshing the
region of interest into a set of simple geometrical
elements such as triangles, rectangles, etc. The
interiors of these elements are defined through
approximation or shape functions in terms of

displacement certain nodal

values at points
typically located along element boundaries. The
nodal displacement values can be obtained by the

minimization of the residue

using  Galerkin
method (Burnett, 1987). This procedure reduces
Eq. (2) to the following system of ordinary

second-order linear differential equation,

[K]{u} +M{u} = {F}, (18)

where [K] is the stiffness matrix determined by
the elastic properties of the medium, [M] is the
mass matrix determined by the density
distribution of the medium and {F} is the
applied load vector. Since the form of Eq. (18) is
identical to a simple mass-spring oscillator
system, assembling all elements into a large
global matrix system is equivalent to a solid
consisting of discrete masses interconnected to
one another by springs.

Numerical modelling based on the finite
element method requires an appropriate mesh size
and time increment according to the frequencies
and wavelengths of interest. Note that large
element size filters short wavelengths since the
mesh plays a role of a low-pass fiiter. On the
other hand, very small element size can cause
numerical instability. In the wave propagation
simulations, the numerical discretization errors
associated with the element size can be minimized
by using at least 10 nodes per minimum
wavelength in the case of isotropic materials. For

the minimum spatial resolution Az, the time step
can be estimated from At= Az/ \/c§+c§ which

is a condition that energy should not propagate
right across a mesh volume in a single time-step.
Moreover, boundary

conditions and material

properties must adequately represent the real
situation.

o -
<} o
I
"

Stress o, [MPa]
: o
5

0.0 05 10 15 20
Time [us]

Fig. 7 Stress tensor 0, at 25 ym below the top

surface of the SUS316L slab versus time at
the distance 25 mm from the center of the
laser source.
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Fig. 8 Stress tensor o, at 25 ym below the top

surface of the SUS316L slab versus time at
the distance 25 mm from the center of the
laser source.

Table 1 Symbols of parameters and values of

material constants for stainless steel
(SUS316L)
Parameter SUS316L

€y | Compression wave vel 5790 m/s
Cy | Shear wave velocity 3100m/s
cp | Rayleigh wave velocity 2870m/ s
p Density 7960 kg/ m
« | Linear expansion coeff. 159 %1078 K1
# | Thermal diffusivity 25x10 % n/s
k | Thermal conductivity 1349 WimK
R | Reflectivity 0.94(@1.06 am)
14 | Shear elastic modulus 786 GFh
A | Lame elastic modulus 1951 GFa
v | Poisson ratio 0293
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We carried out the FEM simulations for
thermoelastical generation of ultrasonic waves by
the irradiation of a line-focused laser pulse on a
stainless steel (SUS316L) slab. The overall
dimensions of the SUS316L slab is 2.5 mm thick
(y-direction) by 10mm long (z-direction). The
material parameters of SUS316L are listed in
Table 1. The laser parameters are £=1.8 mJ
per unit length, w=0.1 mm and v=30 ns.
The laser is focused on the center of the top
surface of the slab. Since the laser specification
is capable of generating ultrasonic waves having
10 MHz, the
around

a central frequency of about

minimum  wavelength  is 29 ym.
Accordingly we use the mesh size of 25 ym and
the time step of 5ns. To relieve computational
burden of the computer system, we consider a
2-dimensional (with z- and y- axes) model which
is legitimately employed in a system that has a
symmetry about y—z plane. Note that all the
data plotted in the figures is computed at the
distance 2.5 mm from the center of the laser

source except for Figs. 1, 2 and 9.

10 15
Time [us]

Fig. 9 Plot of the vertical displacement of the
bottom surface of the SUS316L slab versus
time. The distances measure the detection
points from the center of the laser source.

A vector representation of the wavefronts
radiating into the SUS316L slab at ¢t=1pus is
shown in Fig. 1, where only the right half part
from the laser irradiation point is shown. Fig. 1
clearly shows that the compression, the shear and
the head waves are propagating inside the slab
and are being reflected at the bottom surface. On
the top and bottom surface one can see the
Rayleigh surface waves formed right before the
shear wave parts.
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Fig. 10 Vertical displacement of the bottom surface
of the SUS316L slab versus time at the
distance 2.5 mm from the center of the
laser source.
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Fig. 11 Horizontal displacement of the bottom

surface of the SUS316L slab versus time
at the distance 2.5 mm from the center of
the laser source.

Fig. 2 is a time-domain plot of the vertical
displacement of the top surface of the slab, where
the distances measure the detection points from
the center of the laser source. Note that the time
width of the ultrasonic pulse gets wider as the
high frequency

distance increases since the

components suffer more severely from the
attenuation than the low frequency components.
The compression wave reflected from the corner
of the top surface is barely seen in Fig. 2, where
the reflected wavefront meets the shear wavefront
at the distance 3.3mm and is being mixed
completely with the shear and Rayleigh wavefronts
beyond this distance. Fig. 2 shows that another
compression wavefront follows, which is reflected

from the bottom surface.
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Fig. 13 Stress tensor o, at the bottom surface of

the SUS316L slab versus time at the
distance 2.5 mm from the center of the
laser source.

Figs. 3 and 4 are the time-domain plots of the
components u,, u, at the top surface, respectively.
Figs. 3 and 4

wave fronts, travelling with velocities ¢;, c,, and

show that there exist three distinct

cp, which are identified as the compression
wave, the shear wave, and the Rayleigh surface
wave, tespectively. The central frequency of the
ultrasonic wave of ~8MHz can be read from
Fig. 5. The stress tensor component ¢, at the top
surface of the slab is plotted in Fig. 6. The stress

components o,

below the top surface are computed and plotted

and o, at a position 25 pm

y
in Figs. 7 and 8 because these stress tensor
components are zero on the surface.

Before an arrival of the compression wave,
Uy, 0., 0, and g, are completely quiescent as

shown in Figs. 3, 4, 6, 7 and 8. At the arrival of

the compression wave, u

, and o, begn to

respond outwardly and o, toward the source. As

the Rayleigh wave arrives, these values begin
growing in opposite senses. The components of
the shear wave are alleviated as the time becomes
closer to the arrival of the Rayleigh wave while
those of the Rayleigh wave have very large
values right after the arrival of the Rayleigh
wave. Note that the displacement of the Rayleigh
surface wave decays much less than that of the
compression wave with distance.
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Fig. 14 Stress tensor o, at 25um above the

bottom surface of the SUS316L slab
versus time at the distance 2.5 mm from
the center of the laser source.
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Fig. 15 Stress tensor o, at 25um above the

bottom surface of the SUS316L slab
versus time at the distance 2.5 mm from
the center of the laser source.

Fig. 9 is a time-domain plot of the vertical
displacement of the bottom surface of the slab.
Note that the distances measure the detection
points from the center of the laser source. Also,
Fig. 9 shows that the time width of the ultrasonic

wave gets wider as the distance increases because
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of the high frequency attenuation. The compression
wave reflected from the comer of the bottom
surface is clearly seen in Fig. 9, where the
reflected wavefront meets the shear wavefront at
the distance of 3.3mm and it is separated
completely from the shear and Rayleigh
wavefronts beyond this distance. Fig. 9 shows that
other wavefronts are following, which are reflected
from the top surface and from the corner of the
bottom surface.

Figs. 10 and 11 are the time-domain plots of
the components w,, u, at the bottom surface,

respectively. Figs. 10 and 11 show that there
three distinct wave fronts exist, travelling with
velocities ¢;, ¢y, and c¢p, which are identified as
the compression wave, the shear wave, and the
Rayleigh surface wave, respectively. The central
frequency of the ultrasonic wave of ~ 8MHz
can be read from Fig. 12. The stress tensor
component o, at the bottom surface of the slab

is plotted in Fig. 13. The stress components g,

and o, at a position 25 pm below the top
surface are computed and plotted in Figs. 14 and
15 because these stress tensor components are
zero on the surface.

4. Concluding Remarks
solution of the

The integral-transformed

elastodynamic  equations involves integrals of

highly oscillatory functions over semi-infinite
intervals and inversion of a one-sided Laplace
transform. The computational schemes employed
are based on Filon's method and a Fourier-series
technique for evaluating the numerical inversion of
the Fourier-Laplace transform. As a disadvantage
of the analytical model, we point out that the final
inverse integral transforms have to be evaluated
numerically which is more time consuming than
the numerical schemes that solve for all the field
points simultaneously. Thus the numerical model
based on the finite element method is clearly
capable

of predicting the wave propagation

phenomena, pulsed wave propagation, beam spread,

and it has the ability to study arbitrarily shaped
defects.

In the
ultrasonics, the thermal wave equation plays a

thermoelastic region of the laser

key role in describing the source term. Since the
speed of the Rayleigh surface wave is much
slower than that of the heat wave, the temporal
profile of the displacement is mainly determined
by the material properties rather than by the
laser-pulse properties. Therefore, it is very hard
to broaden the frequency spectrum of the
ultrasonic wave in the thermoelastic region. In an
ablative regime, however, broad-band ultrasonic
waves can be generated by using ultrashort laser
pulses. A thermal dipole model can explain the
physical process involved in generating the
thermoelastic surface wave. The branch points and
the real poles in the integral-transformed solution
of the elastodynamic equations determine the
arrival times of the compression, the shear, and
the Rayleigh waves, respectively. The use of the
Rayleigh great
advantage in NDT&E because it decays much less

surface wave may have a

than the compression wave does with a distance.
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