• 제목/요약/키워드: isotherm modeling

검색결과 34건 처리시간 0.027초

Moisture Sorption Isotherm Characteristics of Chaga Mushroom Powder as Influenced by Particle Size

  • Lee, Min-Ji;Lee, Jun-Ho
    • Food Science and Biotechnology
    • /
    • 제16권1호
    • /
    • pp.154-158
    • /
    • 2007
  • Adsorption isotherms for chaga mushroom powder as influenced by particle size were investigated using a gravimetric technique. Samples were equilibrated in desiccators containing sulfuric acid solutions of known water activity (0.11-0.93), then placed in temperature-controlled chambers for approximately ten days. Equilibrium moisture content (EMC) of chaga mushroom powder increased with water activity in all samples. EMC was slightly greater in the samples comprised of smaller particle size, however there was no marked difference in appearance between the three samples. The chaga mushroom powder exhibited Type II behavior. When the BET model was used to determine mean monolayer values, 0.077, 0.077, and 0.070 $H_2O/dry$ solid was observed for <250, 250-425, and $425-850\;{\mu}m$ sized samples, respectively, however mean monolayer values were 0.121, 0.111, and 0.101 $H_2O/dry$ solid, respectively, when the GAB model was used. The experimental EMC values were related to the computed values from Henderson's model. The coefficient of determination and standard error for the linear regression were 0.997 and 0.003, respectively.

하천 내 유사와 인 이동에 관한 모델링 (Modeling of Sediment and Phosphorous Transport in a River Channel)

  • 김경현
    • 한국물환경학회지
    • /
    • 제26권2호
    • /
    • pp.332-342
    • /
    • 2010
  • A model has been developed to investigate in-river sediment and phosphorus dynamics. This advective-dispersive model is coupled with hydrodynamics and sediment transport submodels to simulate suspended sediment, total dissolved phosphorus, total phosphorus, and particulate phosphorus concentrations under unsteady flow conditions. It emphasizes sediment and phosphorus dynamics in unsteady flow conditions, in which the study differs from many previous solute transport studies, conducted in relatively steady flow conditions. The diffusion wave approaximation was employed for unsteady flow simulations. The first-order adsorption and linear adsorption isotherm model was used on the basis of the three-layered riverbed submodel with riverbed sediment exchange and erosion/deposition processes. Various numerical methods were tested to select a method that had minimal numerical dispersion under unsteady flow conditions. The responses of the model to the change of model parameter values were tested as well.

자연저감 모델링 연구 (Evaluation of Natural Attenuation of Petroleum Hydrocarbons in a Shallow Sand Aquifer: a Modeling Study)

  • 이진용;이명재;이강근;이민효;윤정기
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 총회 및 춘계학술발표회
    • /
    • pp.128-131
    • /
    • 2001
  • We evaluated natural attenuation of petroleum hydrocarbons in a shallow aquifer using a modeling study. The studied shallow aquifer was severely contaminated with petroleum hydrocarbons, especially toluene, ethylbenzene and xylenes (i.e, TEX). The exact spill history was not known. Therefor we used a contaminant level in May 1999 (the first sampling date of our integrated study) as an initial contaminant concentration. we calibrated required transport parameters using the contamination levels obtained from groundwater analyses in September of 1999. For fate and transport of the petroleum contaminants, five case 2 with sorption and degradation. case 3 with sorption and degradation (half decay constant compared with case 2), case 4 with degradation but no sorption, and case 5 with sorption but no degradation. For sorption and degradation, a linear sorption isotherm and first order irreversible decay was assumed, respectively and no additional contamination source to groundwater is also assumed.

  • PDF

Turbulent Natural Convection in a Hemispherical Geometry Containing Internal Heat SourcesZ

  • Lee, Heedo;Park, Goon-cherl
    • Nuclear Engineering and Technology
    • /
    • 제30권6호
    • /
    • pp.496-506
    • /
    • 1998
  • This paper deals with the computational modeling of buoyancy-driven turbulent heat transfer involving spatially uniform volumetric heat sources in semicircular geometry. The Launder & Sharma low-Reynolds number k-$\varepsilon$ turbulence model without any modifications and the SIMPLER computational algorithm were used for the numerical modeling, which was incorporated into the new computer code CORE-TNC. This computer code was subsequently benchmarked with the Mini-ACOPO experimental data in the modified Rayleigh number range of 2$\times$10$^{13}$ $\times$10$^{14}$ . The general trends of the velocity and temperature fields were well predicted by the model used, and the calculated isotherm patterns were found to be very similiar to those observed in previous experimental investigations. The deviation between the Mini-ACOPO experimental data and the corresponding numerical results obtained with CORE-TNC for the average Nusselt number was less than 30% using fine grid in the near-wall region and the three-point difference formula for the wall temperature gradient. With isothermal pool boundaries, heat was convected predominantly to the upper and adjacent lateral surfaces, and the bottom surface received smaller heat fluxes.

  • PDF

Removal of Heavy metal Ions from Aqueous Solutions by Adsorption on Magadiite

  • 정순용;이정민
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권2호
    • /
    • pp.218-222
    • /
    • 1998
  • Removal of Cd(Ⅱ), Zn(Ⅱ) and Cu(Ⅱ) from aqueous solutions using the adsorption process on magadiite has been investigated. It was found that the removal percentage of metal cations at equilibrium increases with increasing temperature, and follows the order of Cd(Ⅱ) > Cu(Ⅱ) > Zn(Ⅱ). Equilibrium modeling of adsorption showed that the adsorptions of Cd(Ⅱ), Cu(Ⅱ), and Zn(Ⅱ) were fitted to Langmuir isotherm. Kinetic modeling of the adsorption showed that first order reversible kinetic model fitted to experimental data. From kinetic model and equilibrium data, the overall rate constant (k) and the equilibrium constant (K) for the adsorption process were calculated. The overall rates of adsorption of metal ions follow the order of Cd(Ⅱ) > Cu(Ⅱ) > Zn(Ⅱ). From the results of thermodynamic analysis, standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) of adsorption process were calculated.

Evaluation of refused tea waste activated carbon for color removal: Equilibrium and kinetic studies

  • Wijetunga, Somasiri;Gunasekara, Chathurika DFA
    • Advances in environmental research
    • /
    • 제6권1호
    • /
    • pp.1-14
    • /
    • 2017
  • New technologies or improvement of the existing technologies are required to enhance the efficiency of removal of pollutants from wastewater. In this study we attempted to produce and test the activated carbon produced from the refused tea waste for the removal of dyes from wastewater. The objectives of this investigation were to produce activated carbon from refused tea waste by chemical activation, evaluate its performance for the removal of color produced from Acid Yellow 36, and the modeling of its dye removal with the kinetic study. The activation was performed in two steps namely carbonization at $375{\pm}25^{\circ}C$ and chemical activation with HCl at $800^{\circ}C$ under the absence of Oxygen. Adsorption isotherms and kinetic studies were performed with a textile dye, Acid Yellow 36, at different concentrations (20-80 mg/L). The maximum dye removal (~90%) observed at 80 mg/L dye concentration and it reduced at low dye concentrations. Maximum adsorption (71.97 mg/g) was recorded at 96 h at $29{\pm}1^{\circ}C$. Low pH increased the dye adsorption (pH=2; 78.27 mg/g) while adsorption reduced at high pH levels indicating that the competition occurs in between OH- ions and AY36 molecules for the adsorption sites in RTAC. The Langmuir isotherm model clearly explained the dye adsorption, favorably, by RTAC. Moreover, kinetic studied performed showed that the pseudo second order kinetic model clearly describes the dye adsorption. Based on the results obtained in this study, it can be concluded that RTAC can be used for the removal of textile dyes.

Prediction of Temperature and Moisture Distributions in Hardening Concrete By Using a Hydration Model

  • Park, Ki-Bong
    • Architectural research
    • /
    • 제14권4호
    • /
    • pp.153-161
    • /
    • 2012
  • This paper presents an integrated procedure to predict the temperature and moisture distributions in hardening concrete considering the effects of temperature and aging. The degree of hydration is employed as a fundamental parameter to evaluate hydro-thermal-mechanical properties of hardening concrete. The temperature history and temperature distribution in hardening concrete is evaluated by combining cement hydration model with three-dimensional finite element thermal analysis. On the other hand, the influences of both self-desiccation and moisture diffusion on variation of relative humidity are considered. The self-desiccation is evaluated by using a semi-empirical expression with desorption isotherm and degree of hydration. The moisture diffusivity is expressed as a function of degree of hydration and current relative humidity. The proposed procedure is verified with experimental results and can be used to evaluate the early-age crack of hardening concrete.

Simulation for the effect of vertical groundwater flux on the subsurface temperature distribution

  • 신지연;이강근
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2006년도 총회 및 춘계학술발표회
    • /
    • pp.383-386
    • /
    • 2006
  • Subsurface temperature is affected by heat advection due to groundwater advection. Temperature-depth profile can be perturbed especially when there are significant vertical groundwater flux caused by external force such as injection or extraction. This research is to clarify the change of subsurface temperature distribution when the 40m x l0m sandy aquifer is stimulated by two different vertical flux($case1:\;{\pm}10^{-5}m^3/s,\;case2:\;{\pm}4{\times}10^{-5}m^3/s$) using a program called HydroGeoSphere. The resulting temperature distribution contour map shows pumping causes vertical attraction of water from deeper and warmer place which result in rising up isotherm. Additionally more injection/extraction rate, more vertical groundwater flux leads to faster Increase in temperature near the pumping well.

  • PDF

생물흡착의 평형모델에 대한 고찰 (Review for Equilibrium Model of Biosorption)

  • 전충
    • 유기물자원화
    • /
    • 제17권3호
    • /
    • pp.48-54
    • /
    • 2009
  • 중금속 생물흡착에 대한 최근의 연구는 흡착 기작과 원리에 중점을 두고 있다. 효과적인 금속 제거/회수 공정설계를 위하여 모든 형태의 적용에 최적화가 되어지고 있다. 그 최적화는 공정의 수학적 모델에 의한 컴퓨터 모사에 바탕을 두고 효과적으로 수행되어지고 있다. 그래서 등온흡착평형에 대한 연구가 중요하며 단일성분과 다성분계를 포함하는 방법이 소개하였다.

반응표면분석법을 이용한 폐감귤박 활성탄에 의한 수중의 2,4-Dichlorophenol 흡착특성 해석 (Adsorption Characteristics Analysis of 2,4-Dichlorophenol in Aqueous Solution with Activated Carbon Prepared from Waste Citrus Peel using Response Surface Modeling Approach)

  • 이창한;감상규;이민규
    • Korean Chemical Engineering Research
    • /
    • 제55권5호
    • /
    • pp.723-730
    • /
    • 2017
  • 폐감귤박으로 제조한 활성탄(WCAC)에 의한 2,4-디클로로페놀(2,4-DCP) 흡착에서 온도, 초기농도, 접촉시간 및 흡착제 투여량과 같은 운전변수의 영향을 조사하기 위해 회분식 실험 및 반응표면분석법(Response Surface Methodology: RSM)을 적용하였다. 2,4-DCP 흡착부터 도출된 회귀식은 반응변수의 함수로 나타낼 수 있었다. 이 모델의 적합성은 응답에 대한 실험값과 예측값 간의 상관관계에 의해 평가되었다. $R^2$ 값은 0.9921로서 높은 상관성을 가지며, 회귀 모델에 의해 대부분의 데이터 변동을 설명할 수 있었다. 독립변수 및 그 상호작용의 유의성은 분산분석(ANOVA)과 t-검정 통계 기법으로 평가하였다. 이들 결과는 사용된 모델이 응답변수를 유의미하게 잘 부합되며, 응답과 독립 변수 간의 관계를 적합하게 잘 설명한다는 것을 보여 주었다. 흡착 속도 및 등온 실험결과는 각각 유사 2차 속도식 및 Langmuir 등온 모델에 의해 잘 설명될 수 있었다. Langmuir 등온 모델로부터 계산된 WCAC에 의한 2,4-DCP의 최대 흡착량은 345.49 mg/g이었다. 흡착과정에서 막확산과 입자내부확산이 동시에 일어나는 것을 흡착 메커니즘 연구로부터 확인하였다. 열역학적 파라미터는 WCAC에서 2,4-DCP의 흡착 반응이 흡열반응이고 자발적인 과정임을 나타내었다.