DOI QR코드

DOI QR Code

Adsorption Characteristics Analysis of 2,4-Dichlorophenol in Aqueous Solution with Activated Carbon Prepared from Waste Citrus Peel using Response Surface Modeling Approach

반응표면분석법을 이용한 폐감귤박 활성탄에 의한 수중의 2,4-Dichlorophenol 흡착특성 해석

  • Lee, Chang-Han (Department of Environmental Adminstration, Catholic University of Pusan) ;
  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • 이창한 (부산가톨릭대학교 환경행정학과) ;
  • 감상규 (제주대학교 환경공학과) ;
  • 이민규 (부경대학교 화학공학과)
  • Received : 2017.05.22
  • Accepted : 2017.07.14
  • Published : 2017.10.01

Abstract

The batch experiments by response surface methodology (RSM) have been applied to investigate the influences of operating parameters such as temperature, initial concentration, contact time and adsorbent dosage on 2,4-dichlorophenol (2,4-DCP) adsorption with an activated carbon prepared from waste citrus peel (WCAC). Regression equation formulated for the 2,4-DCP adsorption was represented as a function of response variables. Adequacy of the model was tested by the correlation between experimental and predicted values of the response. A fairly high value of $R^2$ (0.9921) indicated that most of the data variation was explained by the regression model. The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA) and t-test statistics. These results showed that the model used to fit response variables was significant and adequate to represent the relationship between the response and the independent variables. The kinetics and isotherm experiment data can be well described with the pseudo-second order model and the Langmuir isotherm model, respectively. The maximum adsorption capacity of 2,4-DCP on WCAC calculated from the Langmuir isotherm model was 345.49 mg/g. The rate controlling mechanism study revealed that film diffusion and intraparticle diffusion were simultaneously occurring during the adsorption process. The thermodynamic parameters indicated that the adsorption reaction of 2,4-DCP on WCAC was an endothermic and spontaneous process.

폐감귤박으로 제조한 활성탄(WCAC)에 의한 2,4-디클로로페놀(2,4-DCP) 흡착에서 온도, 초기농도, 접촉시간 및 흡착제 투여량과 같은 운전변수의 영향을 조사하기 위해 회분식 실험 및 반응표면분석법(Response Surface Methodology: RSM)을 적용하였다. 2,4-DCP 흡착부터 도출된 회귀식은 반응변수의 함수로 나타낼 수 있었다. 이 모델의 적합성은 응답에 대한 실험값과 예측값 간의 상관관계에 의해 평가되었다. $R^2$ 값은 0.9921로서 높은 상관성을 가지며, 회귀 모델에 의해 대부분의 데이터 변동을 설명할 수 있었다. 독립변수 및 그 상호작용의 유의성은 분산분석(ANOVA)과 t-검정 통계 기법으로 평가하였다. 이들 결과는 사용된 모델이 응답변수를 유의미하게 잘 부합되며, 응답과 독립 변수 간의 관계를 적합하게 잘 설명한다는 것을 보여 주었다. 흡착 속도 및 등온 실험결과는 각각 유사 2차 속도식 및 Langmuir 등온 모델에 의해 잘 설명될 수 있었다. Langmuir 등온 모델로부터 계산된 WCAC에 의한 2,4-DCP의 최대 흡착량은 345.49 mg/g이었다. 흡착과정에서 막확산과 입자내부확산이 동시에 일어나는 것을 흡착 메커니즘 연구로부터 확인하였다. 열역학적 파라미터는 WCAC에서 2,4-DCP의 흡착 반응이 흡열반응이고 자발적인 과정임을 나타내었다.

Keywords

References

  1. Rappe, C., "In the Handbook of Environmental Chemistry: Anthropogenic Compounds," O. Huntzinger, Ed.: Springer-Verlag: Berlin, 3, Part A(1980).
  2. Ryu, J., Kim, H. G., Won, S. H., Hwang, S. M., Kim, S. M., Kim, N. K. and Lee, Y. C., "Liquid-phase Adsorption Equilibrium Characteristics of p-Chlorophenol and 2,4-Dichlorophenol by Synthetic Resin Adsorbents," Korean Ind. Eng. Chem., 14(5), 650-656(2003).
  3. Dabrowski, A., Podkoscielny, P., Hubicki, Z. and Barczak, M., "Adsorption of Phenolic Compounds by Activated Carbon - A Critical Review," Chemosphere, 58, 1049-1070(2005). https://doi.org/10.1016/j.chemosphere.2004.09.067
  4. Rengaraj, S., Moon, S. H., Sivabalan, R., Arabindoo, B. and Murugesan, V., "Agricultural Solid Waste for the Removal of Organics Adsorption of Phenol from Water and Wastewater by Palm Seed Coat Aactivated Carbon," Waste Manage., 22, 543-548(2002). https://doi.org/10.1016/S0956-053X(01)00016-2
  5. Eom, S. Y. and Ryu, S. K., "Adsorption of Phenol from Aqueous Solution by Metal-containing ACFs," Korean Chem. Eng. Res., 39(1), 54-58(2001).
  6. Graham, N., Chu, W. and Lau, C., "Observations of 2, 4, 6-trichlorophenol Degradation by Ozone," Chemosphere, 51, 237-243(2003). https://doi.org/10.1016/S0045-6535(02)00815-9
  7. Klumpp, E., Contreras-Ortega, C., Klahre, P., Tino, F. J., Yapar, S., Portillo, C., Stegen, S., Queirolo, F. and Schwuger, M. J., "Sorption of 2,4-Dichlorophenol on Modified Hydrotalcites," Colloids Surf. A, 230, 111-116(2003). https://doi.org/10.1016/j.colsurfa.2003.09.018
  8. Rzeszutek, K. and Chow, A., "Extraction of Phenols using Polyurethane Membrane," Talanta, 46, 507-519(1998). https://doi.org/10.1016/S0039-9140(97)00273-7
  9. Das, S., Banthia, A. K. and Adhikari, B., "Porous Polyurethane Urea Membranes for Pervaporation Separation of Phenol and Chlorophenols from Water," Chem. Eng. J., 138, 215-223(2008). https://doi.org/10.1016/j.cej.2007.06.030
  10. Goncharuk, V. V., Kucheruk, D. D., Kochkodan, V. M. and Badekha, V. P., "Removal of Organic Substances from Aqueous Solutions by Reagent Enhanced Rreverse Osmosis," Desalination, 143, 45-51(2002). https://doi.org/10.1016/S0011-9164(02)00220-5
  11. Rodgers, J. D., Jedral, W. and Bunce, N. J., "Electrochemical Oxidation of Chlorinated Phenols," Environ. Sci. Technol., 33, 1453-1457(1999). https://doi.org/10.1021/es9808189
  12. Guo, Z., Ma, R. and Li, G., "Degradation of Phenol by Nanomaterials $TiO_2$ in Wastewater," Chem. Eng. J., 119, 55-59(2006). https://doi.org/10.1016/j.cej.2006.01.017
  13. Gallizia, I., McClean, S. and Banat, I. B., "Bacterial Biodegradation of Phenol and 2,4-Dichlorophenol," J. Chem. Tech. Biotech., 78, 959-963(2003). https://doi.org/10.1002/jctb.890
  14. Wang, C. C., Lee, C. M. and Kuan, C. H., "Removal of 2,4-Dichlorophenol by Suspended and Immobilized Bacillus insolitus," Chemosphere, 41, 447-452(2000). https://doi.org/10.1016/S0045-6535(99)00263-5
  15. Ahmaruzzaman, M., "Adsorption of Phenolic Compounds on Low-cost Adsorbents: A Review," Adv. Colloid Interface Sci., 143, 48-67(2008). https://doi.org/10.1016/j.cis.2008.07.002
  16. Celis, J. de., Amadeo, N. E. and Cukierman, A. L., "In situ Modification of Activated Carbons Developed from a Native Invasive Wood on Removal of Trace Toxic Metals from Wastewater," J. Hazard. Mater., 161, 217-223(2009). https://doi.org/10.1016/j.jhazmat.2008.03.075
  17. Chandra, T. C., Mirna, M. M., Sudaryanto, Y. and Ismadji, S., "Synthesis of Bentonite-carbon Nanotube Nanocomposite and Its Adsorption of Rhodamine Dye from Water," Chem. Eng. J., 127, 121-129(2007). https://doi.org/10.1016/j.cej.2006.09.011
  18. Ioannidou, O. and Zabaniotou, A., "Agricultural Residues as Precursors for Activated Carbon Production - A Review," Renew. Sust. Energy Rev., 11, 1966-2005(2007). https://doi.org/10.1016/j.rser.2006.03.013
  19. Namasivayam, C. and Kavitha, D., "Adsorptive Removal of 2,4-dichlorophenol from Wastewater by Low-cost Carbon from an Agricultural Solid Waste: Coconut Coir Pith," Sep. Sci. Technol., 39, 1407-1425(2004).
  20. Shaarani, F. W. and Hameed, B. H., "Batch Adsorption of 2,4-dichlorophenol onto Activated Carbon Derived from Agricultural Waste," Desalination, 255, 159-164(2010). https://doi.org/10.1016/j.desal.2009.12.029
  21. Sathishkumar, M., Vijayaraghavan, K., Binupriya, A. R., Stephan, A. M., Choi, J. G. and Yun, S. E., "Porogen Effect on Characteristics of Banana Pith Carbon and the Sorption of Dichlorophenols," J. Colloid Interf. Sci., 320, 22-29(2008). https://doi.org/10.1016/j.jcis.2007.12.011
  22. Sathishkumar, M., Binupriya, A. R., Kavitha, D. and Yun, S. E., "Kinetic and Isothermal Studies on Liquid-phase Adsorption of 2,4-Dichlorophenol by Palm Pith Carbon," Bioresour. Technol., 98, 866-873(2007). https://doi.org/10.1016/j.biortech.2006.03.002
  23. Kam, S. K., Kang, K. H. and Lee, M. G., "Preparation of Activated Carbon from Waste Citrus Peels by KOH," Appl. Chem. Eng., Submitted (2017).
  24. Sadri Moghaddam, S., Alavi Moghaddam, M. and Arami, M., "Coagulation/Flocculation Process for Dye Removal using Sludge from Water Treatment Plant: Optimization through Response Surface Methodology," J. Hazard. Mater., 175, 651-657(2010). https://doi.org/10.1016/j.jhazmat.2009.10.058
  25. Zhao, L., Zhou, J., Jia, Y. and Chen, J., "Biodecolorization of Acid Red GR by a Newly Isolated Dyella ginsengisoli LA-4 using Response Surface Methodology," J. Hazard. Mater., 181, 602-608(2010). https://doi.org/10.1016/j.jhazmat.2010.05.055
  26. Kim, H. D., Im, Y. K., Choi, J. I. and Han, S. J., "Optimization of Physical Factor for Amylase Production by Arthrobacter sp. by Response Surface Methodology," Korean Chem. Eng. Res., 54(1), 140-144(2016). https://doi.org/10.9713/kcer.2016.54.1.140
  27. Liu, H.-L., Lan, Y.-W. and Cheng, Y.-C., "Optimal Production of Sulphuric Acid by Thiobacillus thiooxidans using Response Surface Methodology," Process Biochem., 39, 1953-1961(2004). https://doi.org/10.1016/j.procbio.2003.09.018
  28. Yetilmezsoy, K., Demirel, S. and Vanderbei, R. J., "Response Surface Modeling of Pb(II) Removal from Aqueous Solution by Pistacia vera L.: Box-Behnken Experimental Design," J. Hazard. Mater., 171, 551-562(2009). https://doi.org/10.1016/j.jhazmat.2009.06.035
  29. Lagergren, S., "About the Theory of So-called Adsorption of Soluble Substances," Kunglia Svenska Vetenskapsa-kademiens Handlingar., 24, 1-39(1898).
  30. Ho, Y. S. and McKay, G., "The Kinetics of Sorption of Basic Dyes from Aqueous Solution by Sphagnum Moss Peat," Can. J. Chem. Eng., 76, 822-827(1998). https://doi.org/10.1002/cjce.5450760419
  31. Wang, J. P., Feng, H. M. and Yu, H. Q., "Analysis of Adsorption Characteristics of 2,4-Dichlorophenol from Aqueous Solutions by Activated Carbon Fiber," J. Hazard. Mater., 144, 200-207(2007). https://doi.org/10.1016/j.jhazmat.2006.10.003
  32. Weber, W. J. and Morris, J. C., "Equilibria and Capacities for Adsorption on Carbon," J. Sanit. Eng. Div. Proc. Am. Soc. Civ. Eng., 90, 79-91(1964).
  33. Lee, S. W., Kam, S. K. and Lee, M. G., "Adsorption Characteristics of Methylene Blue and Phenol from Aqueous Solution using Coal-based Activated Carbon," J. Environ. Sci. Int., 22, 1161-1170(2013). https://doi.org/10.5322/JESI.2013.22.9.1161
  34. Ren, L., Zhang, J., Li, Y. and Zhang, C., "Preparation and Evaluation of Cattail Fiber-based Activated Carbon for 2,4-Dichlorophenol and 2,4,6-trichlorophenol Removal," Chem. Eng. J., 168, 553-561 (2011). https://doi.org/10.1016/j.cej.2011.01.021
  35. Langmuir, I., "The Adsorption of Gases on Plane Surface of Glass, Mica and Platinum," J. Am. Chem. Soc., 40, 1361-1403(1918). https://doi.org/10.1021/ja02242a004
  36. Freundlich, H. M. F., "Over the Adsorption in Solution," J. Phys. Chem., 57, 385-470(1906).