• Title/Summary/Keyword: isomers

Search Result 553, Processing Time 0.195 seconds

Separation and Purification of 2,6-dimethylnaphthalene in the Light Cycle Oil(II) - Separation of Individual Isomers of Dimethylnaphthalene - (접촉분해경유에 함유된 2,6-dimethylnaphthalene의 분리, 정제(II) - Dimethylnaphthalene 이성체 성분간 분리 -)

  • Kim, Su Jin;Kim, Sang Chai;Kawasaki, Junjiro
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.869-876
    • /
    • 1996
  • Purification of 2,6-dimethylnaphthalene(2,6-DMNA) from the distillate containing a mixture of dimethylnaphthalene(DMNA) isomers of very high concentration was investigated by crystallization-recrystallization combination as a after-treatment for separation and purification of 2,6-DMNA in the light cycle oil(LCO). The separation of individual isomers of DMNA was studied by crystallization with the distillate as a feed. 2,6-DMNA, 2,7-dimethylnaphthalene(2,7-DMNA) and 2,3-dimethylnaphthalene(2,3-DMNA) were concentrated to crystal, and it was fould that separation between a group of 2,6-, 2,7-, 2,3-DMNA isomers and a group of the other DMNA isomers was possible. However, it was not possible to separate 2,6-, 2,7- and 2,3-DMNA from one another. To select the most suitable recrystallization solvent for purification of 2,6-DMNA, several conventional solvents, which have been employed commercially as recrystallization solvents for high purity performance, were tested, through measurement of solubility of 2,6- and 2,7-DMNA. The solvent used were hexane, iso-propyl ether, ethyl acetate and ethanol. From the solubility results for 2,6- and 2,7-DMNA, ethanol seemed to be the most suitable solvent for purification of 2,6-DMNA. Finally, with crystal recovered by crystallization as a feed and ethanol as a solvent, recrystallization experiments were conducted under various conditions. Purification of 2,6-DMNA was easily done with increasing operating temperature and solvent to feed ratio. These results show that the crystallization-recrystallization combination is an effective one for separation of individual isomers of DMNA.

  • PDF

Beneficial Biological Activities of Conjugated Linoleic Acid (CLA의 생물학적 기능)

  • Ha, Yeong L.;Kim, Jeong O.;Kim, Young S.
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.965-973
    • /
    • 2017
  • Conjugated linoleic acid (CLA) is a group of positional and geometric isomers of linoleic acid with conjugated double bonds at C9,C11 and C10,C12 positions. Of possible CLA isomers, a naturally occurring CLA isomer is c9,t11-CLA which is produced from linoleic acid by linoleate isomerase from various rumen and lactic bacteria, and mushroom mycelia. Meanwhile, synthetically prepared CLA contained an equal amount of c9,t11-CLA and t10,c12-CLA isomers, and other isomers as minor constituents. CLA was firstly mentioned in 1939 during the elaidinization reaction of linoleic acid. Thereafter, CLA was not an attractant to scientists because it was not scientifically interested any more. However, since the anticarcinogenic action was driven from 7,12-dimethylbenz[a]anthracene (DMBA)-induced mouse skin carcinogenesis in 1987, CLA-related researches were drastically elevated, resulting in approximately 6,100 research papers in literature, so far. CLA exhibited the significant biological activities: anticarcinogenic, antidiabetic, antihypertensive, antiatherosclerotic, body-fat reducing, antioxidative, antiinflammatory, testosterone producing and other activities. Interestingly, two major CLA isomers, c9,t11-CLA and t10,c12-CLA, exhibited different biological activities. Meanwhile, t,t-CLA isomers which is minor constituent of chemically synthesized CLA from linoleic acid exhibited more potent anticarcinogenic activity in carcinogen-induced animal models and cancer cell lines than other CLA isomrs. In the present review, the significant biological activities of CLA were discussed along with historical studies of CLA since 1939.

Separation and Purification of 2,6-dimethylnaphthalene in the Light Cycle Oil(I) -Concentration of a mixture of dimethylnaphthalene isomers in the light cycle oil- (접촉분해경유에 함유된 2,6-dimethylnaphthalene의 분리, 정제(I) -접촉분해경유에 함유된 dimethylnaphthalene이성체 혼합물의 농축-)

  • Kim, Su-Jin;Kim, Sang-Chai;Kawasaki, Junjiro
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.162-170
    • /
    • 1996
  • Light cycle Oil(LCO) contains 2,6-dimethylnaphthalene (2,6-DMNA) which is used as the basic material for high performance engineering plastics and liquid crystal polymer. This study was experimentally investigated to concentrate a mixture of dimethylnaphthalene(DMNA) isomers in the LCO by extraction-distillation combination as a pretreatment for separation and purification of 2,6-DMNA in the LCO. Furthermore, concentration of a mixture of DMNA isomers in the LCO compared between distillation and extraction-distillation combination. The recovery of aromatics in the LCO was performed by batch cocurrent multistage extraction with dimethylsulfoxide and water mixture as solvent. The concentration of naphthalene group(carbon number 10-12) in the extracted mixture is higher than that in the LCO. The yield for naphthalene group increased with decreasing carbon number. The yield for a mixture of DMNA isomers obtained in 5 equilibrium extration runs was about 65%. the separation of individual components with extractedmixture was tested by batch distillation. Futhermore, for recovery of a mixture of DMNA isomers of high concentration, distillate containing DMNA was distilled. As a result, a mixture of DMNA isomers with high concentration such as 60wt% was recovered. The extraction-distillation combination was more effective than the distillation to concentration a mixture of DMNA isomer in the LCO.

  • PDF

Substrate Interactions on Biodegradation of Benzene, Toluene, Ethylbenzene and Xylene Isomers(BTEX) by Indigenous Soil Microorganisms (토양미생물을 이용한 Benzene, Toluene, Ethylbenzene 그리고 Xylene isomers(BTEX)의 분해시 기질반응)

  • La, Hyun-Joo;Chang, Soon-Woong;Lee, Si-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.375-383
    • /
    • 2000
  • A mixed culture isolated from petroleum-contaminated soil was enriched on toluene as a sole carbon and energy source, and degradation characteristics of BTEX(Benzene, Toluene, Ethylbenzene, Xylenes) was observed. In the single-substrate experiments, all the BTEX compounds were degraded, and it was degraded as following orders; toluene, benzene, ethylbenzene, and p-xylene. In the degradation experiments of BTEX mixtures, the degradation rate was decreased compared to that in the single substrate experiment and ethylbenzene was degraded faster than benzene. In the experiments of binary-mixtures, various substrate interactions such as inhibition, stimulation, and non-interaction were observed, and ethylbenzene was shown to be most potent inhibitor of BTEX degradation. In the degradation characteristic studies of xylene isomers, m-xylene and p-xylene were degraded as carbon sources, and it was stimulated in the presence of either benzene or toluene. However, degradation of o-xylene was enhanced only in the presence of benzene.

  • PDF

Computational Investigation of Isomeric and Conformeric Structures of Methyl Fluoroperoxide and Fluoromethyl Fluoroperoxides (Methyl fluoroperoxide와 fuoromethyl fluoroperoxides의 conformers와 isomers 구조에 대한 이론연구)

  • Lee, Kyoung-Min;Sung, Eun-Mo
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.405-411
    • /
    • 2011
  • The ab initio calculations for fluoromethyl fluoroperoxides have been carried out using MP2/6-311G(d,p) and B3LYP/6-311++G(d,p) method. The structural optimizations were performed for several isomers and conformers of methyl fluoroperoxide, $CH_3OOF$ and the vibrational frequencies were calculated. The most stable conformer of $CH_3OOF$ is skew form and has fairly short O-O bond distance. The trans and cis conformers have 8-12 kcal/mol higher energies than skew form and the other isomers are very unstable. The structures of $CH_2FOOF$, $CHF_2OOF$ and $CF_3OOF$ are also optimized and vibrational frequencies were calculated. These molecules also have skew forms as the lowest energy conformers. The O-O bond distances are longer and C-O bond distances are shorter than $CH_3OOF$, but the structural parameters are almost independent of the number of fluorine atoms in methyl group.