• Title/Summary/Keyword: isolation systems

Search Result 783, Processing Time 0.031 seconds

Seismic evaluation and retrofitting of reinforced concrete buildings with base isolation systems

  • Vasiliadis, Lazaros K.
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.293-311
    • /
    • 2016
  • A parametric study on the nonlinear seismic response of isolated reinforced concrete structural frame is presented. Three prototype frames designed according to the 1954 Hellenic seismic code, with number of floor ranging from 1 to 3 were considered. These low rise frames are representative of many existing reinforced concrete buildings in Greece. The efficacy of the implementation of both lead rubber bearings (LRB) and friction pendulum isolators (FPI) base isolation systems were examined. The selection of the isolation devices was made according to the ratio $T_{is}/T_{fb}$, where Tis is the period of the base isolation system and $T_{bf}$ is the period of the fixed-base building. The main purpose of this comprehensive study is to investigate the effect of the isolation system period on the seismic response of inadequately designed low rise buildings. Thus, the implementation of isolation systems which correspond to the ratio $T_{is}/T_{fb}$ that values from 3 to 5 is studied. Nonlinear time history analyses were performed to investigate the response of the isolated structures using a set of three natural seismic ground motions. The evaluation of each retrofitting case was made in terms of storey drift and storey shear force while in view of serviceability it was made in terms of storey acceleration. Finally, the maximum developed displacements and the residual displacements of the isolation systems are presented.

A Study on Base Isolation Performance of Magneto-Sensitive Rubbers (자기민감 고무를 이용한 구조물의 면진성능 연구)

  • Hwang In-Ho;Lim Jong-Hyuk;Lee Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.437-444
    • /
    • 2006
  • Recently, as large structures become lighter and more flexible, the necessity of structural control for reducing excessive displacement and acceleration due to seismic excitation is increased. As a means to minimize seismic damages, various base isolation systems are adopted or considered for adoption. In this study, a base isolation system using Magneto-Sensitive(MS) rubbers is proposed and shown to effectively protect structures against earthquakes. The MS Rubber is a class of smart controllable materials whose mechanical properties change instantly by the application of a magnetic field To demonstrate the advantages of this approach, the MS Rubber isolation system is compared to Lead-Rubber Bearing(LRB) isolation systems and judged based on computed responses to several historical earthquakes. The MS Rubber isolation system is shown to achieve notable decreases in base drifts over comparable passive systems with no accompanying increase in base shears or in accelerations imparted to the superstructure.

  • PDF

Improvement of Seismic Safety of Nuclear Power Plants by Equipment Isolations (기기의 면진을 통한 원전의 내진안전성 향상)

  • 전영선;최인길
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.93-100
    • /
    • 2003
  • Seismic isolation systems can improve the seismic safety of nuclear power plants by decreasing seismic force transmitted to structures and equipment. This study evaluates the effectiveness of equipment seismic isolation systems by the comparison of core damage frequencies in non-isolated and isolated cases. It can be found that the seismic isolation systems increase seismic capacity of nuclear equipment and decrease core damage frequencies significantly. The effect of equipment isolation is more significant in the PGA range of 0.3g to 0.5g.

  • PDF

Simultaneous Fault Isolation of Redundant Inertial Sensors based on the Reduced-Order Parity Vectors

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2188-2191
    • /
    • 2005
  • We consider a fault detection and isolation problem for inertial navigation systems which use redundant inertial sensors. We propose a FDI method using average of multiple parity vectors which reduce false alarm and wrong isolation, and improve correct isolation. We suggest the number of redundant sensors required to isolate simultaneous faults. The performance of the proposed FDI algorithm is analyzed by Monte-Carlo simulation.

  • PDF

Fault Isolation Filter Design Using Left Eigenstructure Assignment Scheme (좌 고유구조 지정기법을 이용한 고장분리 필터 설계)

  • 최재원;이대영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.695-702
    • /
    • 1998
  • In this paper, we propose a novel fault isolation filter design method using the left eigenstructure assignment scheme proposed by Choi et. al., The proposed filter shows good fault isolation performance with exact eigenstructure assignment. An eigenstructure assignment methodology which satisfies the required fault isolation conditions is also proposed. The proposed method guarantees that the corrupted m simultaneous faults can be isolated when the number of available output measurements are (m+1).

  • PDF

A Method of Improving Isolation Between Tx and Rx Paths in TDD Systems (TDD 시스템에서 송수신 격리도 향상 방법)

  • Kang, Sang-Gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2009
  • A switch or circulator is used for distinguishing between the paths of transmitter and receiver in TDD systems. If the isolation between Tx and Rx paths is low in TDD systems, the output signal of the ransmitter acts as an interferer to the receiver even if the transceiver operates on the receiver mode. In this paper we propose a method to get high isolation characteristics between transmitting and receiving paths in TDD systems. We implement the module with a proposed improving method to verify the effect of the isolation improvement and the experimental results are presented. The isolation improvement of above 44.8 dB over the frequency bandwidth of 30 MHz is obtained from the implemented isolation improvement module.

Performance of multi-storey structures with high damping rubber bearing base isolation systems

  • Karabork, Turan
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.399-410
    • /
    • 2011
  • Base isolation, having quite simple contents, aims to protect the buildings from earthquake-induced damages by installing structural components having low horizontal stiffness between substructure and superstructure. In this study, an appropriate base isolation system for 2-D reinforced concrete frame is investigated. For different structural heights, the structural systems of 2, 3 and 4 bays are modeled by applying base isolation systems and results are compared with conventional structural systems. 1999 Marmara earthquake data is used for applying the model by time history method in SAP2000 package. Results of various parameters such as base shear force, structure drift ratio, structure period and superstructure acceleration are discussed for all models.

Overview of the development of smart base isolation system featuring magnetorheological elastomer

  • Li, Yancheng;Li, Jianchun
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.37-52
    • /
    • 2019
  • Despite its success and wide application, base isolation system has been challenged for its passive nature, i.e., incapable of working with versatile external loadings. This is particularly exaggerated during near-source earthquakes and earthquakes with dominate low-frequency components. To address this issue, many efforts have been explored, including active base isolation system and hybrid base isolation system (with added controllable damping). Active base isolation system requires extra energy input which is not economical and the power supply may not be available during earthquakes. Although with tunable energy dissipation ability, hybrid base isolation systems are not able to alter its fundamental natural frequency to cope with varying external loadings. This paper reports an overview of new adventure with aim to develop adaptive base isolation system with controllable stiffness (thus adaptive natural frequency). With assistance of the feedback control system and the use of smart material technology, the proposed smart base isolation system is able to realize real-time decoupling of external loading and hence provides effective seismic protection against different types of earthquakes.

Performance Isolation of Shared Space for Virtualized SSD based Storage Systems

  • Kim, Sungho;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.1-8
    • /
    • 2019
  • In this paper, we propose a performance isolation of shared space for virtualized SSD based storage systems, to solve the weakness in a VSSD framework. The proposed scheme adopts a CFQ scheduler and a shared space-based FTL for the fairness and the performance isolation for multiple users on virtualized SSD based storage systems. Using the CFQ scheduler, we ensure SLOs for the storage systems such as a service time, a allocated space, and a IO latency for users on the virtualized storage systems. In addition, to improve a throughput and reduce a computational latency for garbage collection, a shared space-based FTL is adopted to maintain the information of SLOs for users and it manages shared spaces among the users. In our experiments, the proposal improved the throughput of garbage collection by 7.11%, on average, and reduced the computational latency for garbage collection by 9.63% on average, compared to the previous work.

Experiment of an ABS-type control strategy for semi-active friction isolation systems

  • Lu, Lyan-Ywan;Lin, Ging-Long;Lin, Chen-Yu
    • Smart Structures and Systems
    • /
    • v.8 no.5
    • /
    • pp.501-524
    • /
    • 2011
  • Recent studies have discovered that a conventional passive isolation system may suffer from an excessive isolator displacement when subjected to a near-fault earthquake that usually has a long-period velocity pulse waveform. Semi-active isolation using variable friction dampers (VFD), which requires a suitable control law, may provide a solution to this problem. To control the VFD in a semi-active isolation system more efficiently, this paper investigates experimentally the possible use of a control law whose control logic is similar to that of the anti-lock braking systems (ABS) widely used in the automobile industry. This ABS-type controller has the advantages of being simple and easily implemented, because it only requires the measurement of the isolation-layer velocity and does not require system modeling for gain design. Most importantly, it does not interfere with the isolation period, which usually decides the isolation efficiency. In order to verify its feasibility and effectiveness, the ABS-type controller was implemented on a variable-friction isolation system whose slip force is regulated by an embedded piezoelectric actuator, and a seismic simulation test was conducted for this isolation system. The experimental results demonstrate that, as compared to a passive isolation system with various levels of added damping, the semi-active isolation system using the ABS-type controller has the better overall performance when both the far-field and the near-fault earthquakes with different PGA levels are considered.