• 제목/요약/키워드: isolation period

검색결과 394건 처리시간 0.024초

Study on Seismic Responses for Base Isolated Structure Subjected to Earthquakes with Different Frequency Characteristics (주파수특성이 다른 입력지진에 대한 면진구조물의 지진응답연구)

  • Yoo, Bong;Lee, Jae-Han
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.224-231
    • /
    • 1997
  • A study on the seismic responses for a base isolated structure subjected to earthquakes with different frequency characteristics is peformed with time history analyses. Two types of seismic inputs are considered in these analyses, one is short period earthquakes such as El Centro(1940, NS), the other is long period ones such as Mexico(1985). The seismic responses of the base isolated structure depend on seismic input types and isolation frequencies. In this study the 0.5 Hz of isolation frequency for short period earthquakes remarkably reduces the acceleration responses, increases the relative displacements of isolator that are still within the proposed limits of isolator. However higher isolation frequency for long period earthquakes is more adequate to reduce the seismic responses of the base isolated structures; in the study 0.75 Hz is effective to Mexico 1985 earthquake.

  • PDF

Experiment of an ABS-type control strategy for semi-active friction isolation systems

  • Lu, Lyan-Ywan;Lin, Ging-Long;Lin, Chen-Yu
    • Smart Structures and Systems
    • /
    • 제8권5호
    • /
    • pp.501-524
    • /
    • 2011
  • Recent studies have discovered that a conventional passive isolation system may suffer from an excessive isolator displacement when subjected to a near-fault earthquake that usually has a long-period velocity pulse waveform. Semi-active isolation using variable friction dampers (VFD), which requires a suitable control law, may provide a solution to this problem. To control the VFD in a semi-active isolation system more efficiently, this paper investigates experimentally the possible use of a control law whose control logic is similar to that of the anti-lock braking systems (ABS) widely used in the automobile industry. This ABS-type controller has the advantages of being simple and easily implemented, because it only requires the measurement of the isolation-layer velocity and does not require system modeling for gain design. Most importantly, it does not interfere with the isolation period, which usually decides the isolation efficiency. In order to verify its feasibility and effectiveness, the ABS-type controller was implemented on a variable-friction isolation system whose slip force is regulated by an embedded piezoelectric actuator, and a seismic simulation test was conducted for this isolation system. The experimental results demonstrate that, as compared to a passive isolation system with various levels of added damping, the semi-active isolation system using the ABS-type controller has the better overall performance when both the far-field and the near-fault earthquakes with different PGA levels are considered.

Vertical equipment isolation using piezoelectric inertial-type isolation system

  • Lu, Lyan-Ywan;Lin, Ging-Long;Chen, Yi-Siang;Hsiao, Kun-An
    • Smart Structures and Systems
    • /
    • 제26권2호
    • /
    • pp.195-211
    • /
    • 2020
  • Among anti-seismic technologies, base isolation is a very effective means of mitigating damage to structural and nonstructural components, such as equipment. However, most seismic isolation systems are designed for mitigating only horizontal seismic responses because the realization of a vertical isolation system (VIS) is difficult. The difficulty is primarily due to conflicting isolation stiffness demands in the static and dynamic states for a VIS, which requires sufficient rigidity to support the self-weight of the isolated object in the static state, but sufficient flexibility to lengthen the isolation period and uncouple the ground motion in the dynamic state. To overcome this problem, a semi-active VIS, called the piezoelectric inertia-type vertical isolation system (PIVIS), is proposed in this study. PIVIS is composed of a piezoelectric friction damper (PFD) and a leverage mechanism with a counterweight. The counterweight provides an uplifting force in the static state and an extra inertial force in the dynamic state; therefore, the effective vertical stiffness of PIVIS is higher in the static state and lower in the dynamic state. The PFD provides a controllable friction force for PIVIS to further prevent its excessive displacement. For experimental verification, a shaking table test was conducted on a prototype PIVIS controlled by a simple controller. The experimental results well agree with the theoretical results. To further investigate the isolation performance of PIVIS, the seismic responses of PIVIS were simulated numerically by considering 14 vertical ground motions with different characteristics. The responses of PIVIS were compared with those of a traditional VIS and a passive system (PIVIS without control). The numerical results demonstrate that compared with the traditional and passive systems, PIVIS can effectively suppress isolation displacement in all kinds of earthquake with various peak ground accelerations and frequency content while maintaining its isolation efficiency. The proposed system is particularly effective for near-fault earthquakes with long-period components, for which it prevents resonant-like motion.

The Seismic Response According to Rise-Span Ratio of the Arch Structure With Seismic Isolation (라이즈-스팬비에 따른 면진 아치구조물의 지진응답 분석)

  • Kim, Su-Geun;Kim, Yu-Seong;Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • 제18권1호
    • /
    • pp.55-65
    • /
    • 2018
  • In order to reduce the seismic response of the spatial structure, a seismic isolation system with sufficient flexibility is used. The natural period of structure with seismic isolation system got be long to avoid prominent period. In this study, The seismic response of the truss-arch structure, which is modeled in three types according to the rise-span ratio is analyzed on El-centro, Northridge and Artificial Earthquake and compared with the seismic response of the truss-arch structure with lead rubber bearing(LRB). When seismic load is applied to the truss arch with isolation system, the horizontal acceleration response of the truss arch is reduced and vertical seismic response is also reduced. The application of the seismic isolation system is effective in controlling the seismic response.

Seismic Behavior of the Spacial Structure with Seismic Isolation (면진장치를 적용한 대공간구조물의 지진응답 분석)

  • Kim, Gee-Cheol;Ju, Dong-Hyem
    • Journal of Korean Association for Spatial Structures
    • /
    • 제8권6호
    • /
    • pp.49-57
    • /
    • 2008
  • The seismic isolation systems could be used to reduce the seismic response of a structure. The natural period of a structure with seismic isolation system got be long to avoid the prominent seismic period. The purpose of this study is to analyzed the seismic behavior of the truss arch that is supported to column with LRB. Truss arch structures subjected to horizontal seismic have large horizontal and vertical response unlike seismic behavior of normal rahmen structures. When seismic load is applied to the truss arch with isolation systems, the horizontal acceleration response of the truss arch is reduced and the vertical seismic response is remarkably reduced. Also, the seismic behaviors of the truss arch with strengthen column as like lattice column are very similar to that of the truss arch supported to directly foundation. The Seismic Isolation system can be applied to reduce efficiently the seismic response of the spacial structure with not strong column.

  • PDF

The effect of impact with adjacent structure on seismic behavior of base-isolated buildings with DCFP bearings

  • Bagheri, Morteza;Khoshnoudiana, Faramarz
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.277-297
    • /
    • 2014
  • Since the isolation bearings undergo large displacements in base-isolated structures, impact with adjacent structures is inevitable. Therefore, in this investigation, the effect of impact on seismic response of isolated structures mounted on double concave friction pendulum (DCFP) bearings subjected to near field ground motions is considered. A non-linear viscoelastic model of collision is used to simulate structural pounding more accurately. 2-, 4- and 8-story base-isolated buildings adjacent to fixed-base structures are modeled and the coupled differential equations of motion related to these isolated systems are solved in the MATLAB environment using the SIMULINK toolbox. The variation of seismic responses such as base shear, displacement in the isolation system and superstructure (top floor) is computed to study the impact condition. Also, the effects of variation of system parameters: isolation period, superstructure period, size of seismic gap between two structures, radius of curvature of the sliding surface and friction coefficient of isolator are contemplated in this study. It is concluded that the normalized base shear, bearing and top floor displacement increase due to impact with adjacent structure. When the distance between two structures decreases, the base shear and displacement increase comparing to no impact condition. Besides, the increase in friction coefficient difference also causes the normalized base shear and displacement in isolation system and superstructure increase in comparison with bi-linear hysteretic behavior of base isolation system. Totally, the comparison of results indicates that the changes in values of friction coefficient have more significant effects on 2-story building than 4- and 8-story buildings.

Seismic response of spring-damper-rolling systems with concave friction distribution

  • Wei, Biao;Wang, Peng;He, Xuhui;Jiang, Lizhong
    • Earthquakes and Structures
    • /
    • 제11권1호
    • /
    • pp.25-43
    • /
    • 2016
  • The uneven distribution of rolling friction coefficient may lead to great uncertainty in the structural seismic isolation performance. This paper attempts to improve the isolation performance of a spring-damper-rolling isolation system by artificially making the uneven friction distribution to be concave. The rolling friction coefficient gradually increases when the isolator rolls away from the original position during an earthquake. After the spring-damper-rolling isolation system under different ground motions was calculated by a numerical analysis method, the system obtained more regular results than that of random uneven friction distributions. Results shows that the concave friction distribution can not only dissipate the earthquake energy, but also change the structural natural period. These functions improve the seismic isolation efficiency of the spring-damper-rolling isolation system in comparison with the random uneven distribution of rolling friction coefficient, and always lead to a relatively acceptable isolation state even if the actual earthquake significantly differs from the design earthquake.

A Study on the General Ward Planning Considering Conversion to Negative Pressured Isolation Unit (음압격리병실으로의 전환을 고려한 일반병동의 건축계획에 대한 연구)

  • Kwon, Soonjung;Kim, Jiyoon
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • 제30권3호
    • /
    • pp.25-33
    • /
    • 2024
  • Purpose: As infectious diseases spread, hospitals have converted general wards into negative pressure isolation wards through remodeling. During the conversion process, there were limitations in converting the existing ward into an effective isolation ward due to its existing structure and mechanical system. To minimize these problems, this study proposes some general ward planning methods taking into account effective conversion to an infectious disease ward. Methods: Seven rapid conversion isolation wards have been analyzed in order to check their appropriateness as a negative pressured isolation unit. Then, general ward design planning methods that can minimize problems in rapidly converted negative pressured wards have been derived. Results: If general wards can be efficiently converted into negative pressure isolation wards, many isolation facilities can be secured effectively in a short period of time during a pandemic.

Suspended Columns for Seismic Isolation in Structures (SCSI): A preliminary analytical study

  • Shahabi, Ali Beirami;Ahari, Gholamreza Zamani;Barghian, Majid
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.743-755
    • /
    • 2019
  • In this paper, a new system of seismic isolation for buildings - called suspended columns - is introduced. In this method, the building columns are placed on the hinged cradle seats instead of direct connection to the foundation. In this system, each of the columns is put on a seat hung from its surrounding area by a number of cables, for which cavities are created inside the foundation around the columns. Inside these cavities, the tensile cables are hung. Because of the flexibility of the cables, the suspended seats vibrate during an earthquake and as a result, there is less acceleration in the structure than the foundation. A Matlab code was written to analyze and investigate the response of the system against the earthquake excitations. The findings showed that if this system is used in a building, it results in a significant reduction in the acceleration applied to the structure. A shear key system was used to control the structure for service and lateral weak loads. Moreover, the effect of vertical acceleration on the seismic behavior of the system was also investigated. Effect of the earthquake characteristic period on the system performance was studied and the optimum length of the suspension cables for a variety of the period ranges was suggested. In addition, measures have been taken for long-term functioning of the system and some practical feasibility features were also discussed. Finally, the advantages and limitations of the system were discussed and compared with the other common methods of seismic isolation.

Full-scale tests and analytical model of the Teflon-based lead rubber isolation bearings

  • Wang, Lu;Oua, Jin;Liu, Weiqing;Wang, Shuguang
    • Structural Engineering and Mechanics
    • /
    • 제48권6호
    • /
    • pp.809-822
    • /
    • 2013
  • Base isolation is widely used in seismic resisting buildings due to its low construction cost, high reliability, mature theory and convenient usage. However, it is difficult to design the isolation layer in high-rise buildings using the available bearings because high-rise buildings are characterized with long period, low horizontal stiffness, and complex re-distribution of the internal forces under earthquake loads etc. In this paper, a simple and innovative isolation bearing, named Teflon-based lead rubber isolation bearing, is developed to address the mentioned problems. The Teflon-based lead rubber isolation bearing consists of friction material and lead rubber isolation bearing. Hence, it integrates advantages of friction bearings and lead rubber isolation bearings so that improves the stability of base isolation system. An experimental study was conducted to validate the effectiveness of this new bearing. The effects of vertical loading, displacement amplitude and loading frequency on the force-displacement relationship and energy dissipation capacity of the Teflon-based lead rubber isolation bearing were studied. An analytical model was also proposed to predict the force-displacement relationship of the new bearing. Comparison of analytical and experimental results showed that the analytical model can accurately predict the force-displacement relationship and elastic shear deflection of the Teflon-based lead rubber isolation bearings.