• Title/Summary/Keyword: isoflavones synthase

Search Result 13, Processing Time 0.02 seconds

INTERACTIONS BETWEEN COX-2 AND NITRIC OXIDE SYNTHASE OF ESTROGEN AND ISOFLAVONES IN VIVO

  • Shin, Jane-In;Park, Ock-Jin
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.88-88
    • /
    • 2002
  • Cyclooxygenase(COX) metabolizes arachidonic acid to prostaglandins and thromboxanes. It has been reported that there is 'cross-talk' between COX-2 and nitric oxide synthase(NOS). Stimulation of eNOS of estrogen fed animal heart was not accompanied by the increase in COX-2 expression.(omitted)

  • PDF

Cloning and Characterization of Isoflavone synthase from Lespedeza bicolor (싸리에서 isoflavone synthase 유전자의 분리 및 생화학적 특성)

  • Kim, Bong-Gyu
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.1
    • /
    • pp.60-64
    • /
    • 2010
  • None of genes from Lespedeza bicolor involved in isoflavonoid biosynthesis have been biochemically characterized. An isoflavone synthase from Lespedeza bicolor was cloned. To verify its catalytic activity, a fusion protein of LbIFS with P450 reductase from rice was made. Using this construct, production of isoflavone from flavanone was confirmed.

Manipulating Isoflavone Levels in Plants

  • Jung Woo-Suk;Chung Ill-Min;Heo Hwa-Young
    • Journal of Plant Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.149-155
    • /
    • 2003
  • Metabolic engineering for production of isoflavones in nonlegume plants could distribute the health benefits of these phytoestrogens in more widely-consumed grains. Series of investigation to check the ability of the heterologous isoflavone synthase enzyme to interact with the endogenous phenylpropanoid pathway have been conducted. Overall, results provide possibility of production of isoflavonoids in several plant tissue systems including soybean and nonlegumes. In tissue that undergoes naturally enhanced synthesis of anthocyanins, genistein production was enhanced. In a monocot cell system, introduced expression of a transcription factor regulating genes of the anthocyanin pathway was effective in conferring the ability to produce genistein in the presence of the isoflavone synthase gene. However, in this case the intermediate accumulated to high levels indicating an inefficiency in its conversion. Introduction of a third gene, chalcone reductase, provided the ability to synthesize an additional substrate of isoflavone synthase resulting in production of the isoflavone daidzein. These research efforts provide insight into requirements for metabolic engineering for isoflavone production in nonlegume dicot and monocot tissues.

Metabolic Engineering of Isoflavone Synthesis in Soybean and Non-legumes

  • Jung, Woo-Suk
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2003.04a
    • /
    • pp.77-84
    • /
    • 2003
  • Metabolic engineering for production of isoflavones in non-legume plants could distribute the health benefits of these phytoe-strogens in more widely-consumed grains. We investigate the ability of the heterologous isoflavone synthase enzyme to interact with the endogenous phenylpropanoid pathway. Overall, results provide possibility of production of isoflavonoids in several plant tissue systems including soybean and non-legumes. In tissue that undergoes naturally enhanced synthesis of anthocyanins, genistein production was enhanced. In a monocot cell system, introduced expression of a transcription factor regulating genes of the antho-cyanin pathway was effective in conferring the ability produce genistein in the presence of the isoflavone synthase gene. However, in this case the intermediate accumulated to high levels indicating an inefficiency in its conversion. Introduction of a third gene, chalcone reductase, provided the ability to synthesize an additional substrate of isoflavone synthase resulting in production of the isoflavone daidzein. These research efforts provide insight into requirements for metabolic engineering for isoflavone production in non-legume dicot and monocot tissues.

  • PDF

Isoflavones Extracted from Sophorae fructus Upregulate IGF-1 and TGF-$\beta$ and Inhibit Osteoclastogenesis in Rat Born Marrow Cells

  • Joo, Seong-Soo;Won, Tae-Joon;Kang, Hee-Cheol;Lee, Do-Ik
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.99-105
    • /
    • 2004
  • Isoflavones have been a central subject in research on the natural phytoestrogens found in Leguminosae. Their effects on bone formation and remodeling are important in that they can act like estrogen by binding on estrogen receptors on the target cell surface. We, therefore, believed that isoflavones may help in the treatment of patients with estrogen deficiency disease such as estrogen replacement therapy (ERT) for osteoporosis. As commonly known, osteoporosis is one of the hormonal deficiency diseases, especially in menopausal women. When estrogen is no longer produced in the body a remarkable bone remodeling process occurs, and the associated events are regulated by growth factors in the osteoblast lineage. In the present study, we investigated whether isoflavones (Isocal) extracted from Sophorae fructus affect the growth factors IGF-I and TGF-$\beta$ that have been known to be related with bone formation. In the study, we found that the active control (PIII) effectively enhanced the level of nitric oxide (NO) and growth factors, and thereby inhibited osteoclastogenesis. The most efficient concentration was $10^{-8}$% within five days, whereas the comparative control (soybean isoflavone) was not as effective even at a lower concentration. In conclusion, the products which contain enriched glucosidic isoflavone and nutrient supplements such as shark cartilage and calcium can be used for osteoporosis therapy by enhancing the production of IGF-I and TGF-$\beta$. Furthermore, the NO produced through endothelial constitutive NO synthase (ecNOS) may playa role in inhibiting bone reabsorption.

Isoflavone Daidzein: Chemistry and Bacterial Metabolism

  • Kim, Mi-Hyang;Han, Jae-Hong;Kim, Soo-Un
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.6
    • /
    • pp.253-261
    • /
    • 2008
  • Isoflavone daidzein is a phytoestrogen widely distributed in Leguminosae and is especially rich in the soybean. The C6-C3 (rings B and C) unit of isoflavones is derived from the phenylpropanoid pathway and the remaining C6 (ring A) unit is from the polyketide pathway. This unique carbon skeleton is the result of isomerization of the flavone catalyzed by the isoflavone synthase, a cytochrome P450 enzyme. The isoflavones daidzein and genistein are present in the plant mostly in the glucosylated forms. However, in the human intestine, the glycosidic linkage is broken, and the free form is uptaked into blood stream. The free form is further metabolized into various reduction products to end up at the equol, which is known to have the most potent estrogenic effect among the metabolites. Several human intestinal bacteria that can convert daidzein into equol have been described, and the study into the chemistry and biochemistry of the daizein reduction would be rewarding to the improvement of the human health.

Flavonoids Differentially Modulate Nitric Oxide Production Pathways in Lipopolysaccharide-Activated RAW264.7 Cells

  • Kim Ae Ra;Cho Jae Youl;Zou Yani;Choi Jae Sue;Chung Hae Young
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.297-304
    • /
    • 2005
  • Naturally occurring flavonoids are known to modulate various inflammatory and immune processes. Based on structural property, in this study, molecular mechanism of flavonoids in modulating nitric oxide (NO) production and its signaling pathway were investigated using lipopolysaccharide (LPS)-activated RAW264.7 cells. Although flavonol-typed flavonoids (kaempferol and quercetin) more potently scavenged reactivity of nitric oxide ($\cdot$NO) as well as peroxynitrite (ONOO$\kappa$) than isoflavones (genistein and genistin), kaempferol, quercetin and genistein showed a little difference in inhibition of both inducible NO synthase expression and NO production, with IC$_{50}$ values of 13.9, 20.1 and 26.8 $\mu$M. However, there was a striking pattern related to structural feature in modulation of LPS-mediated signaling pathways. Thus, flavonols only inhibited transcription factor AP-1 activation, whereas isoflavones suppressed the DNA binding activation of NF-$\kappa$B and C/EBP$\beta$. Therefore, these data suggest that structural feature may be linked to decide drugs target molecule in LPS-mediated signaling pathways, rather than its potency.

Polymorphism and Expression of Isoflavone Synthase Genes from Soybean Cultivars

  • Kim, Hyo-Kyoung;Jang, Yun-Hee;Baek, Il-Sun;Lee, Jeong-Hwan;Park, Min Joo;Chung, Young-Soo;Chung, Jong-Il;Kim, Jeong-Kook
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.67-73
    • /
    • 2005
  • Isoflavones are synthesized by isoflavone synthases via the phenylpropanoid pathway in legumes. We have cloned two isoflavone synthase genes, IFS1 and IFS2, from a total of 18 soybean cultivars. The amino acid residues of the proteins that differed between cultivars were dispersed over the entire coding region. However, amino acid sequence variation did not occur in conserved domains such as the ERR triad region, except that one conserved amino acid was changed in the IFS2 protein of the GS12 cultivar ($R_{374}G$) and the IFS1 proteins of the 99M06 and Soja99s65 cultivars ($A_{109}T$, $F_{105}I$). In three cultivars (99M06, 99M116, and Simheukpi), most of amino acid changes were such that the difference between the amino acid sequences of IFS1 and IFS2 was reduced. The expression profiles of three enzymes that convert naringenin to the isoflavone, genistein, chalcone isomerase (CHI), isoflavone synthase (IFS) and flavanone 3-hydroxylase (F3H) were examined. In general, IFS mRNA was more abundant in etiolated seedlings than mature plants whereas the levels of CHI and F3H mRNAs were similar in the two stages. During seed development, IFS was expressed a little later than CHI and F3H but expression of these three genes was barely detectable, if at all, during later seed hardening. In addition, we found that the levels of CHI, F3H, and IFS mRNAs were under circadian control. We also showed that IFS was induced by wounding and by application of methyl jasmonate to etiolated soybean seedlings.

Antioxidant activity and anti-inflammatory activity of ethanol extract and fractions of Doenjang in LPS-stimulated RAW 264.7 macrophages

  • Kwak, Chung Shil;Son, Dahee;Chung, Young-Shin;Kwon, Young Hye
    • Nutrition Research and Practice
    • /
    • v.9 no.6
    • /
    • pp.569-578
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Fermentation can increase functional compounds in fermented soybean products, thereby improving antioxidant and/or anti-inflammatory activities. We investigated the changes in the contents of phenolics and isoflavones, antioxidant activity and anti-inflammatory activity of Doenjang during fermentation and aging. MATERIALS/METHODS: Doenjang was made by inoculating Aspergillus oryzae and Bacillus licheniformis in soybeans, fermenting and aging for 1, 3, 6, 8, and 12 months (D1, D3, D6, D8, and D12). Doenjang was extracted using ethanol, and sequentially fractioned by hexane, dichloromethane (DM), ethylacetate (EA), n-butanol, and water. The contents of total phenolics, flavonoids and isoflavones, 2,2-diphenyl-1 picryl hydrazyl (DPPH) radical scavenging activity, and ferric reducing antioxidant power (FRAP) were measured. Anti-inflammatory effects in terms of nitric oxide (NO), prostaglandin (PG) E2 and pro-inflammatory cytokine production and inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expressions were also measured using LPS-treated RAW 264.7 macrophages. RESULTS: Total phenolic and flavonoid contents showed a gradual increase during fermentation and 6 months of aging and were sustained thereafter. DPPH radical scavenging activity and FRAP were increased by fermentation. FRAP was further increased by aging, but DPPH radical scavenging activity was not. Total isoflavone and glycoside contents decreased during fermentation and the aging process, while aglycone content and its proportion increased up to 3 or 6 months of aging and then showed a slow decrease. DM and EA fractions of Doenjang showed much higher total phenolic and flavonoid contents, and DPPH radical scavenging activity than the others. At $100{\mu}g/mL$, DM and EA fractions of D12 showed strongly suppressed NO production to 55.6% and 52.5% of control, respectively, and PGE2 production to 25.0% and 28.3% of control with inhibition of iNOS or COX-2 protein expression in macrophages. CONCLUSIONS: Twelve month-aged Doenjang has potent antioxidant and anti-inflammatory activities with high levels of phenolics and isoflavone aglycones, and can be used as a beneficial food for human health.