• Title/Summary/Keyword: iron-core

Search Result 434, Processing Time 0.03 seconds

Comparison Study of Extensive Air Shower Simulations with COSMOS and CORSIKA

  • Roh, Soon-Young;Kim, Ji-Hee;Ryu, Dong-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.70.2-70.2
    • /
    • 2011
  • Ultra-high energy cosmic rays(UHECRs) refer cosmic rays with energy above 1018eV. UHECR experiments have employed air shower simulations to quantify the properties of cosmic rays. Using COSMOS and CORSIKA, we have produced a library of over 15000 thinned extensive air shower(EAS) simulations with the primary energies ranging from 1018.5eV to 1020eV and the zenith angle of primary cosmic ray particles from 0 to 45 for proton and iron primaries. We have compared the results from CORSIKA and COSMOS. The comparison has shown perceptible differences in the ground distributions, longitudinal distributions, Calorimetric energy, and Xmax distributions. We have also measured the detector response evaluated using GEANT4 simulations. Here, we discuss S(800), i.e. the signal at a distance of 800 m from the shower core, as the primary energy estimator and present the lateral distribution function(LDF) with S(800).

  • PDF

Active Cancellation of PMSM Torque Ripple Caused by Magnetic Saturation for EPS Applications

  • Lee, Geun-Ho
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.176-180
    • /
    • 2010
  • This paper deals with a control method to reduce the torque ripple of a permanent magnet synchronous motor (PMSM) for electric power steering (EPS) systems. Such an application requires a very low torque ripple in order to maintain a good steering feel. However, because of spatial limitations, it cannot help having a partial saturation in the iron core of the PMSM for an EPS system, and this saturation results in a significant torque ripple. Thus, this paper analyzes the torque ripple caused by the magnetic saturation of a PMSM and proposes a method with respect to inductance measurement to verify the partial saturation. In addition, it is shown that a compensation current is needed in order to minimize the torque ripple when a PMSM is driven in the high torque region. The estimation process of the current and the torque ripple decreased by the current are presented and verified with test results.

Characteristics Analysis of a Direct-Drive AFPM Generator (직접 구동 AFPM 풍력발전기의 특성해석)

  • Seo, Young-Taek;Kim, Hyoung-Gil;Kong, Jeong-Sik;Kim, Chul-Ho;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.687-689
    • /
    • 2003
  • Recently, issues regarding environment and the diversification of dependence in oil are watched with keen interest. Wind power attracts most interest because of its high-energy efficiency with environment friendly functions. The paper discusses the development of a coreless axial-flux permanent magnet (AFPM) generator for a wind power system. Analyzed the Coreless AFPM generator by electromagnetic, and designed wind power generator with this. The 3 phase output of stator is rectified and fed to a common do link. The overall machine structure has high compactness and lightness, because of the lack of the iron core. The test results with a resistive load confirm the satisfactory operation of generator. Compared with conventional generator, the design has lower weight, lower Power loss and improved efficiency.

  • PDF

Control Based Reduction of Detent Force for Permanent Magnet Linear Synchronous Motor

  • Zhu, Yu-Wu;Cho, Yun-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.172-174
    • /
    • 2008
  • The detent force of the permanent magnet linear synchronous motor (PMLSM) is caused by the interaction between the permanent magnet and the iron core of the mover without input current. It is a function of the mover position relative to the stator. This paper proposes a control based method to reduce the detent force for the PMLSM. This detent force that can be predicted by finite element method (FEM) is compensated by injecting the instantaneous current using the field oriented control (FOC) method. Both the simulated and experimental results are reported to validate the effectiveness of this proposed method.

  • PDF

Assistant Model For Considering Slot-Opening Effect on No-load Air-gap Flux Density Distribution in Interior-type Permanent Magnet Motor (매입형 영구자석 전동기에서 무부하시 공극 자속밀도 분포에 대한 Slot-Opening Effect를 고려한 보조 모델)

  • Fang, Liang;Kim, Do-Jin;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.759-765
    • /
    • 2011
  • This paper proposes an effective assistant model for considering the stator slot-opening effect on air gap flux density distribution in conventional interior-type permanent magnet (IPM) motor. Different from the conventional slot-opening effect analysis in surface-type PM (SPM) motor, a composite effect of slot-opening uniquely existing in IPM motor, which additionally causes enhancement of air gap flux density due to magnet flux path distortion in iron core between the buried PM and rotor surface. This phenomenon is represented by a proposed assistant model, which simply deals with this additional effect by modifying magnetic pole-arc using an effective method. The validity of this proposed analytical model is applied to predict the air gap flux density distribution in an IPM motor model and confirmed by finite element method (FEM).

Development of an User-Friendly Designed Characteristics Analysis Program of Permanent-Split Capacitor Single-Phase Induction Motor (사용자 편의성이 향상된 콘덴서 구동형 단상 유도전동기 특성해석 프로그램의 개발)

  • Jung, In-Soung;Kim, Young-Jung;Sung, Ha-Gyeong
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.884-885
    • /
    • 2007
  • This paper presents an window based user-friendly designed characteristics analysis program of permanent-split capacitor single-phase induction motor. For the analysis, equivalent magnetic circuit and symmetrical coordinate method are used. The saturation effect and iron loss of stator and rotor core are considered. The analysis program is made to GUI type which can be used easily by many elementary designer. The accuracy of analysis is verified by comparison with experimental results.

  • PDF

Voltage Source Finite Element Analysis of Electrical Machines Considering Hysteresis Characteristics (히스테리시스를 고려한 전기기기의 전압원 유한요소 해석)

  • Lee, Seok-Hee;Kim, Hong-Kyu;Jung, Hyun-Kyo;Hong, Sun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.28-30
    • /
    • 1998
  • In this paper, voltage source FEA considering hysteresis characteristics for a simple electrical system is presented because most electrical machines is used under the voltage sources. The magnetization dependent hysteresis model is used for this analysis and the magnetic materials considered in this simulation are iron core and semi-hard material. For a sinusoidal voltage sourece, we got acceptible current wave form which is calculated.

  • PDF

Advanced Numerical Relaying for Power Transformer Protection (전력용변압기보호를 위한 개선된 수치계전기법)

  • Park, Chul-Won;Shin, Myong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.217-219
    • /
    • 2004
  • The second harmonic component could be decreased by magnetizing inrush when there have been changes to the material of the iron core or its design methodology. The higher the capacitance of the high voltage status and underground distribution, the more the differential current includes the second harmonic during the occurrence of an internal fault. Therefore, the conventional second harmonic-restrained RDR needs modification. This paper describes an advanced numerical algorithm that utilizes terminal voltage, differential current harmonics, harmonic ratio, and flux-differential current slope. Based on the results of testing with WatATP99 simulation data, the proposed algorithm was proven to be faster and more reliable.

  • PDF

2-D FIELD ANALYSIS OF MAGNETIZING FIXTURE FOR STATOR MAGNET OF AIR-CLEANER DC MOTOR

  • Kim, Pill-Soo;Kim, Yong;Baek, Soo-Hyun
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.833-836
    • /
    • 1995
  • A capacitor discharge impulse magnetizer is used to produce a high current pulse of short duration in a magnetizing fixture for magnets of the various shapes. The problem of designing custom fixtures for magnetization has often been considered more of conventional experience than a scientific theory. Therefore, the design of magnetizingfixture has until recently been a "cut and try" process. It was common to literally blow up one or more fixtures beforeachieving the desired results. Finite element CAD package allow the design of such a fixture. Since magnetizing fixtures come in a variety of sizes and shapes, there is usually no simple analysis method that can be used to estimate the field characteristics of the fixtures. Instead, one typically uses finite element analysis. FEA program MAXWELL is the primary tool used here. The purpose of this study was a examine both theoretically and experimentally the field characteristics inside the fixture. Independent of sizes and shapes of magnetizing fixtures, the desired magnetic field can be obtained with resonable predictability. The experimental results have been achieved using a 1000[V], 22.4[KJ] capacitor discharge magnetizer and iron-core fixtures.

  • PDF

Fabrication Technology of Turbo Charger Housing for Riser Minimizing by Fusion S/W Application and its Experimental Investigation (압탕 최소화를 위한 터보차저하우징의 융합 S/W 응용 제조기술 및 실험적 검증)

  • Lee, Hak-Chul;Seo, Pan-Ki;Jin, Chul-Kyu;Seo, Hyung-Yoon;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.37 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • The purpose of this study is to increase the part recovery rate (to more than 70%) during the casting of a ductile cast iron turbo charger housing using a heater around the riser. Before creating a casting mold, various runner and riser systems were designed and analyzed with a casting simulation analysis tool. The design variables were the heater temperature, top insulation, riser location, riser diameter and the riser shape. During the feeding from the riser to the part, the reverse model was better than the forward model. When heating the riser (above $600^{\circ}C$), solidification of the riser was delayed and the feeding effect was suitable compared to that without heating. At a higher heating temperature, less solidification shrinkage and porosity were noted inside the part. On the basis of a casting simulation, eight molds were fabricated and casting experiments were conducted. According to the experimental conditions, external and internal defects were analyzed and mechanical properties were tested. The ultimate tensile strength and elongation outcome were correspondingly more than 540MPa and 5% after a heat treatment. In addition, a maximum part recovery rate of 86% was achieved in this study.