• Title/Summary/Keyword: iron-core

Search Result 434, Processing Time 0.025 seconds

Analysis of Hysteresis Characteristics of Flux-Lock Reactor (자속구속 리액터의 히스테리시스 특성 분석)

  • Lim, Sung-Hun;Choi, Hyo-Sang;Kang, Hyeong-Gon;Ko, Seok-Cheol;Lee, Jong-Hwa;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.255-258
    • /
    • 2003
  • The hysteresis characteristics of flux-lock reactor, which is an essential component of flux-lock type superconducting fault current limiter (SFCL), was investigated. The hysteresis loss of iron core in flux-lock type SFCL does not happen due to its winding's structure especially in the normal state. From the equivalent circuit for the flux-lock type SFCL and the fault current limiting experiments, the hysteresis curves could be drawn. Through the hysteresis curves together with the fault current level due to the inductance ratio for the 1st and 2nd winding, the increase of the number of turns in the 2nd winding of the flux-lock type SFCL had a role to prevent the iron core from saturation.

  • PDF

THE EFFECTS OF ANNEALING ON THE DC MAGNETIC PROPERTIES OF AN IRON-BASED AMORPHOUS ALLOY

  • Choi, Y.S.;Kim, D.H.;Lim, S.H.;Noh, T.H.;Kang, I.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.478-482
    • /
    • 1995
  • The iron-based Metglas 2605S3A amorphous alloy ribbons are annealed at $435^{\circ}C$ for various periods from 5 to 210 min, and the effect of annealing is investigated on the dc magnetic properties of the ribbon. Typical square-type hysteresis loops are observed for the ribbons annealed fo 5 min, indicative of the nearly complete removal of residual stresses which are produced during melt-quenching. As the annealing time increases, the coercivity increases and the shape of hysteresis loops transforms to round type and finally to sheared one at the longest annealing time of 210 min. These results may be explained by the formation of clusters with chemical shortorder and very fine crystallites (at the annealing time of 210 min), and the diffusion-induced stresses during the formation of the clusters. For the samples annealed for 5 min, very good dc properties of the squareness ratio, coercivity and maximum permeability are observed, but, rather unexpectedly, the initial permeability is found to be very low. These results are considered to be due to a simple domain structure consisting of very small number of $^{\circ}$ domains.

  • PDF

High Temperature Oxidation Behavior of Nickel and Iron Based Superalloys in Helium Containing Trace Impurities

  • Tsai, C.J.;Yeh, T.K.;Wang, M.Y.
    • Corrosion Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.8-15
    • /
    • 2019
  • A high-temperature gas-cooled reactor (HTGR) is recognized as the best candidate reactor for next generation nuclear reactors. Helium is used to be the coolant in the core of the HTGR with temperature expected to exceed $900^{\circ}C$ at the core outlet. Several iron- and nickel-based superalloys, including Alloy 800H, Hastelloy X, and Alloy 617, are potential structural materials for intermediate heat exchanger (IHX) in an HTGR. Oxidation behaviors of three selected alloys (Hastelloy X, Alloy 800H, and Alloy 617) were investigated at four different temperatures from $650^{\circ}C$ to $950^{\circ}C$ under helium environments with various concentrations of $O_2$ and $H_2O$. Preliminary results showed that chromium oxide as the primary protective layer was observed on surfaces of the three tested alloys. Based on results of mass gain and SEM analyses, Hastelloy X alloy exhibited the best corrosion resistance in all corrosion tests. Further details on the oxidation mechanism of these alloys are presented in this study.

Charging and Persistent-Current Mode Operating Characteristics of BSCCO Magnet Using High-Tc Superconducting Power Supply (고온 초전도 전원장치를 이용한 BSCCO Magnet의 충전 및 영구전류 운전 특성)

  • Jo, Hyun-Chul;Yang, Seong-Eun;Kim, Young-Jae;Hwang, Young-Jin;Yoon, Yong-Soo;Chung, Yoon-Do;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.30-34
    • /
    • 2009
  • This paper deals with charging and persistent-current mode operating characteristics of BSCCO magnet load using high-temperature superconducting (HTS) power supply. The HTS power supply consists of two heater-triggered switches, an iron-core transformer with the primary copper winding and the secondary BSCCO solenoid, and a BSCCO magnet load. The magnet load was fabricated by double pancake winding and its inductance is about 21 mH. A hall sensor was installed at the middle of the magnet load to measure the current in the load. In order to investigate the efficient pumping characteristics, operating tests of heater-triggered switch with respect to dc heater current were carried out, and the electromagnet current was determined by considering saturation characteristics of its iron core. The saturation characteristics of charged current in the magnet load were observed with respect to various pumping periods: 12 s, 14 s, 24 s and 32 s. After charging the magnet load, the persistent current was measured. The operating characteristics of the persistent current mode were mainly determined by joint resistance and magnet load.

International Comparison of Decoupling of Greenhouse Gas Emissions in the Steel Industry (철강산업의 온실가스 배출 탈동조화 국제비교)

  • Kim, Dong Koo
    • Environmental and Resource Economics Review
    • /
    • v.31 no.1
    • /
    • pp.113-139
    • /
    • 2022
  • The iron and steel industry is a manufacturing industry with the largest greenhouse gases emissions and has a great ripple effect on the national economy as a core material industry. This study internationally compared the decoupling patterns of greenhouse gases emissions in the iron and steel industry from 1990 to 2019, focusing on Korea, Japan, and Germany. In particular, unlike previous studies that considered only fuel combustion emissions, this study considered all fuel combustion emissions, industrial process emissions, and indirect emissions from the use of electricity and heat. As a result of the analysis, Korea is interpreted as expansive coupling, Japan as decoupling, and Germany as unclear. Therefore, the decoupling path that the Korean iron and steel industry should take should not be in Germany, but in the form of seeking a decoupling method similar to Japan or more effective than Japan. In addition, this study considered the characteristics of the iron and steel industry as much as possible and presented the causes of the decoupling analysis results and implications for the Korean iron and steel industry through comparison with Japan and Germany. In particular, four factors were suggested as factors which has promoted decoupling in Japan: high value-added of Japanese iron and steel products, development of energy efficiency technology in the Japanese iron and steel industry, strategic M&A of the Japanese iron and steel industry, and maintaining competitiveness according to the closed distribution structure of Japanese iron and steel products. The Korean iron and steel industry should also use the case of Japan as a benchmark to further increase added value through quality uprade and product diversification of iron and steel products, while at the same time making efforts to fundamentally reduce greenhouse gas emissions through the development of new technologies.

Reduction of RDX in Ground Water by Bio-Regenerated Iron Mineral: Results of Field Verification Test at a Miliary Shooting Range (생물환원 철광물촉매에 의한 지하수 내 RDX 환원:군사격장 현장적용 실증결과)

  • Gong, Hyo-young;Lee, Kwang-pyo;Lee, Jong-yeol;Kyung, Daeseung;Lee, Woojin;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.62-72
    • /
    • 2015
  • This study investigates the in-situ implementation of bio-regenerated iron mineral catalyst to remove explosive compounds in ground water at a military shooting range in operation. A bio-regenerated iron mineral catalyst was synthesized using lepidocrocite (iron-bearing soil mineral), iron-reducing bacteria Shewanella putrefaciens CN32, and electron mediator (riboflavin) in the culture medium. This catalyst was then injected periodically in the ground to build a redox active zone acting like permeable reactive barrier through injection wells constructed at a live fire military shooting range. Ground water and core soils were sampled periodically for analysis of explosive compounds, mainly RDX and its metabolites, along with toxicity analysis and REDOX potential measurement. Results suggested that a redox active zone was formed in the subsurface in which contaminated ground water flows through. Concentration of RDX as well as toxicity (% inhibition) of ground water decreased in the downstream compared to those in the upstream while concentration of RDX reduction products increased in the downstream.

Experiments and Dynamics Simulation of a Moving Flat Core Type LOA (평판철심 가동형 리니어 액츄에이터의 동특성 시뮬레이션 및 실험)

  • Jang, S.M.;Cho, H.W.;Lee, S.H.;Kweon, C.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.663-665
    • /
    • 2002
  • Moving flat core type LOA consists of iron flat core as a mover and electric magnet as a stator and operated by electromagnetic force between mover and stator. First, this paper describes the voltage equation of coil and the mechanical equation of motion. Secondly, the dynamic simulation algorithm is proposed, and system control constant-inductance, resistance-were carried by exciting coil. Finally, we turned out the driving system and the dynamic characteristics of current, voltage and displacement is confirmed by experiment.

  • PDF

The Structure and Short Circuit Analysis of Saturable Magnetic Core Superconducting Fault Current Limiter (자기 포화형 고온 초전도 한류기의 구조 및 단락특성에 관한 연구)

  • 최석진;이승제;이찬주;이상진;현옥배;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.154-157
    • /
    • 2000
  • Superconducting tape easily can applied to distribution of electricity. It designs basic model of Saturable Reactor type Fault Current Limiter which used superconducting tape, and observes a specific character by means of simulation. Saturable Reactor type Fault Current Limiter is not influenced by saturation of Magnet core appeared in Induction Fault Current Limiter, because it exploit saturation of Iron core. But, it is possible that superconducting tape quenched when AC current flow to superconducting tape which biased DC voltage.

  • PDF

Compensation for the Secondary Current of an Air-gapped Current Transformer (공극 변류기의 2차 전류 보상)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Jang, Sung-Il;Kim, Yong-Gyun;Park, Ji-Youn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.149-154
    • /
    • 2008
  • An air-gapped current transformer(CT) has been used to reduce a remanent flux in the core, particularly in the case of auto-reclosure. However, it causes larger transient, ratio and phase errors than the iron-cored CT because of the small magnetizing inductance. This paper proposes a compensation algorithm for the secondary current of the air-gapped CT during the fault conditions including auto-reclosure as well as in the steady-state. The core flux is calculated from the measured secondary current of the CT and inserted into the hysteresis loop to estimate the exciting current. Finally, the correct current is estimated by adding the measured secondary current to the estimated exciting current. Various test results clearly indicate that the proposed compensating algorithm can improve the accuracy of the air-gapped CT significantly and reduce the required core cross-section of the air-gapped CT significantly.

New Mathematical Models with Core Loss Factor for Control of AC Motors

  • Shinnaka, Shinji
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.630-635
    • /
    • 1998
  • This paper establishes in a new unified manner new mathematical models with core(iron) loss factor for two kinds of AC motors, induction and synchronous motors which are supposed to generate torque precisely or/and efficiently under vector controls. Our new models consist of three basic equations consistent with the others such as differential equation describing electromagnetic dynamics, torque equation describing torque generating mechanism, energy transmission equation describing how injected energy is wasted, saved or transmitted where all vector signals are defined in general frame of arbitrary instant angular velocity. It is clearly shown in our models that equivalent core-loss resistance can express appropriately and separately both eddy-current and hysteresis losses rather than mere vague loss. Proposed model of induction motor is the most compact in sense of the number of employed interior states and parameters. This compact model can also represent eddy-current and hysteresis losses of rotor as well as stator. For synchronous motor, saliency is taken into consideration. As well known model for cylindrical motor can be obtained directly from salient one as its special case.

  • PDF