• Title/Summary/Keyword: iron bacteria

Search Result 190, Processing Time 0.027 seconds

Identification of the Hybrid Cluster Protein, HCP, from Amitochondriate Eukaryotes and Its Phylogenetic Implications

  • Han, Kyu-Lee;Yong, Tai-Soon;Ryu, Jae-Sook;Hwang, Ui-Wook;Park, Soon-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.134-139
    • /
    • 2004
  • Hybrid cluster protein (HCP) was investigated because of its unique iron-sulfur clusters, which have been found in bacteria and archaea. Here, HCP homologous proteins from the third domain, 'eukarya'(3 amitochondriate protozoans, Giardia lamblia, Entamoeba histolytica, and Trichomonas vaginalis), were identified. All three amitochondriate protozoan HCPs (GlHCP, EhHCP, and TvHCP) belonged to Class I on the basis of two key characters, the cysteine spacing, Cys-(Xaa)₂Cys(Xaa)/sub 7-8/-Cys(Xaa)/sub 5/-Cys, and the absence of N-terminal deletion characteristic to the Class III. In phylogenetic analysis performed with amino acid sequences of 3 eukaryal, 5 bacterial, and 4 archaeal HCPs, the maximum likelihood (ML) tree indicated that TvHCP was clustered with Class I HCPs, whereas the other two HCPs (GlHCP and EhHCP) formed an independent clade with a high bootstrapping value (96%) not belonging to any previously recognized HCP class. In spite of the relatively lower bootstrapping value (61%), the position of the new eukaryal GlHCP-EhHCP clade was close to Class I, including the TvHCP, and Classes II and III were closely related with each other. The finding of eukaryal HCPs would help to understand the evolutionary history of HCP.

Transcriptomic Analysis of Genes Modulated by Cyclo($\small{L}$-Phenylalanine-$\small{L}$-Proline) in Vibrio vulnificus

  • Kim, In Hwang;Son, Jee-Soo;Wen, Yancheng;Jeong, Sang-Min;Min, Ga-Young;Park, Na-Young;Lee, Keun-Woo;Cho, Yong-Joon;Chun, Jongsik;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1791-1801
    • /
    • 2013
  • Diketopiperazine is produced by various organisms, including bacteria, fungi, and animals, and has been suggested as a novel signal molecule involved in the modulation of genes with various biological functions. Vibrio vulnificus, which causes septicemia in humans, produces cyclo($\small{L}$-phenylalanine-$\small{L}$-proline) (cFP). To understand the biological roles of cFP, the effect of the compound on the expression of the total mRNA in V. vulnificus was assessed by next-generation sequencing. Based on the transcriptomic analysis, we classified the cFP-regulated genes into functional categories and clustered them according to the expression patterns resulted from treatment with cFP. From a total of 4,673 genes, excepting the genes encoding tRNA in V. vulnificus, 356 genes were up-regulated and 602 genes were down-regulated with an RPKM (reads per kilobase per million) value above 3. The genes most highly induced by cFP comprised those associated with the transport and metabolism of inorganic molecules, particularly iron. The genes negatively regulated by cFP included those associated with energy production and conversion, as well as carbohydrate metabolism. Noticeably, numerous genes related with biofilm formation were modulated by cFP. We demonstrated that cFP interferes significantly with the biofilm formation of V. vulnificus.

Doped Sol-gel TiO2 Films for Biological Applications

  • Gartner, M.;Trapalis, C.;Todorova, N.;Giannakopoulou, T.;Dobrescu, G.;Anastasescu, M.;Osiceanu, P.;Ghita, A.;Enache, M.;Dumitru, L.;Stoica, T.;Zaharescu, M.;Bae, J.Y.;Suh, S.H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.1038-1042
    • /
    • 2008
  • Mono and multilayer TiO2(Fe, $PEG_{600}$) films were deposited by the dip-coating on $SiO_2$/glass substrate using sol-gel method. In an attempt to improve the antibacterial properties of doped $TiO_2$ films, the influence of the iron oxides and polyethilenglycol ($PEG_{600}$) on the morphological, optical, surface chemical composition and biological properties of nanostructured layers was studied. Complementary measurements were performed including Spectroscopic Ellipsometry (SE), Scanning Electron Microscopy (SEM) coupled with the fractal analysis, X-Ray Photoelectron Spectroscopy (XPS) and antibacterial tests. It was found that different concentrations of Fe and $PEG_{600}$ added to coating solution strongly influence the porosity and morphology at nanometric scale related to fractal behaviour and the elemental and chemical states of the surfaces as well. The thermal treatment under oxidative atmosphere leads to films densification and oxides phase stabilization. The antibacterial activity of coatings against Escherichia Coli bacteria was examined by specific antibacterial tests.

A study on the chemical treatment of biodeterioration about stone pagoda of Iksan Mireuksaji-Focusing on bio-treatment using K201 (익산 미륵사지석탑의 생물침해 방지를 위한 보존처리제 적용실험-K201 생물처리제를 중심으로)

  • Yang, Hee-Jae;Chung, Yong-Jae;Kim, Sa-Dug;Kim, Gwaoung-Hun
    • 보존과학연구
    • /
    • s.24
    • /
    • pp.81-98
    • /
    • 2003
  • The biodeterioration on Iksan Mireuksaji pagoda has been studied with fucus on application of K201 as a chemical treatment. Total of 39species, including 10 algae, 16 lichens, 6 mosses and 7 unidentified bacteria and fungi, were collected and identified on the surface of the pagoda. Most of them caused serious discoloration on the surface. The effectiveness and stability of K201 was examined by applying it on some part of the pagoda. A mild spraying of solution diluted to half of original reagent was good enough to eliminate all the deteriorating species on the surface. Most of discoloration disappeared after the treatment except the red color caused by iron substance. The effectiveness of the regent was compared with water wash. The stone was first washed with water and the dirt on the surface was scrubbed off from the surface. The initial surface of the stone was clearer in water wash. However, many of the deteriorating species reappear in 4 weeks after water wash. Although spraying of the reagent K201 could noteliminate all the remnant of dead organisms as good as scrubbing the surface, no deteriorating algae or lichen was observed until two month after treatment. Therefore, spraying method with chemicals seems more stable and reliable way to remove the biodeterioration than physical scrubbing of the surface.

  • PDF

Inhibition of Growth and Activity of Iron Oxidizing Bacteria for the Prevention of Acid Mine Drainage Production (철산화 박테리아의 생장 및 활성 억제를 통한 산성광산배수의 발생 저감)

  • Park, Youngtae;Yang, Jungseok;Kwon, Manjae;Yun, Hyunshik;Ji, Minkyu;Jee, Eundo;Lee, Wooram;Ji, Wonhyun;Kwon, Hyunho;Choi, Jaeyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.5-11
    • /
    • 2012
  • Acid mine drainage (AMD) is one of the most severe environmental problem that results from the oxidation of pyrite $(FeS_2)$ and various other metal sulfides. In this study, the influence of microorganism was tested on the process where AMD was released and the method to inhibit AMD generated by microorganisms at abandoned mine area. The activity and growth rate of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, common microorganisms affecting AMD occurrence, were measured. Chlorine dioxide $(ClO_2)$, NaCl, or surfactant (ASOR-770) was used as an inhibitor for working on activity and growth of microorganism. Among the three inhibitors, 10ppm of chlorine dioxide was the most effective inhibitor for AMD control due to the reduced the activity and growth of microorganisms by 20%.

A Study on Dyeing of Gray Tone Utilizing Green Tea (녹차에 의한 회색계열 염색에 관한 연구)

  • Shin, Nam-Hee;Kim, Sung-Yeon;Cho, Kuyung-Rae
    • Fashion & Textile Research Journal
    • /
    • v.8 no.3
    • /
    • pp.343-348
    • /
    • 2006
  • This study aims to attain gray tone dyed goods by using tannin that is contained in green tea. Tannin is given general name of polyphenol, which has a characteristic that bonds with protein and it is used for food preservative that protects against bacteria, as well as its purpose of black tone dye for silk treatment that has been processed since its early ages. In particular, as tannin reacts with all kinds of metallic mordant and changes to various colors, when tannin acid is combined with iron, it becomes tannin steel and produces gray tone color. Tannin that is contained in green tea is condensed tannins and its structure does not hydrolyze, thus having flavan type structure. In order to find the suitable condition for processing tannin, UV-Vis part absorption spectrum of green tea tannin, dye ability based on temperature and time, reflection rate based on concentration, color changes based on acid treatment and alkali treatment, changes on surface based on concentration or metal mordant condition, and lightfastness were measured. Maximum absorption wavelength (${\lambda}_{max}$) of green tea tannin was at around 273nm, while strong absorption was also observed at below 350 nm. Dye ability of green tea tannin is done more easily on silk rather than cellulose fibers such as cotton, while the optimum condition for dyeing was observed to be at $60^{\circ}C$, for 20 minutes. As a result of acid treatment, the color of dye material consisted highly of gray tones and showed overall gray tone with the combined color of yellow and red after the alkali treatment. While it was observed that as dye concentration and metal mordant concentration increased, the color changed at counter-clockwise direction on the Y-scale of Munsell's scale of colors. Additionally, lightfastness was more on a normal fading.

Fermentation and Quality of Kimchi Prepared wth Chiness Cabbages Harvested from Field and Hydroponic Cultivation

  • Kim, Soon -Dong;Kim, Mee -Kyung;Youn, Kwang -Sup;No, Hong-Kyoon;Han, Duck-Chul
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.4
    • /
    • pp.241-245
    • /
    • 1999
  • The potential of hydroponic cultivated Chinese cabbage as a kimchi material was evaluated. The hydroponic-grown (HG) Chinese cabbage was heavier in weight, taller in height, wider in width, but less in number of leaves compared with the field-grown (FG) Chinese cabbage. The former showed higher contents of calcium, iron, vitamin A and niacin, and lower lipid and vitamin C than the latter. During fermentation of 28 days at 1$0^{\circ}C$, FG and HG kimchis showed comparable pH and acidity values, besides that the FG and HG kimchis showed a pH value of 4.2 and 4.0, respectively, at the 14th day. The FG kimchi showed higher numbers of total microbes as well as total and typical lactic acid bacteria than the HG kimchi at the 7th day. However, both kimchis did not show any difference at 14th day. There was no significant difference in the {TEX}$L^{*}${/TEX} value between FG and HG kimchis. However, HG kimchi showed a more reddish hue than FE kimchi between the 7th and 14th day of fermentation. In sensory evaluation, the HG kimchi revealed a slightly more sour taste and a less crispy texture than the FE kimchi at the 14th day. However, both kimchis did not show any difference in overall quality until the 21st day of fermentation.

  • PDF

Removal Characteristics of Dissolved Uranium by Shewanella p. and Application to Radioactive Waste Disposal (스와넬라균(Shewanella p.)에 의한 용존우라늄 제거 특성 및 방사성폐기물 처분에의 응용)

  • Lee, Seung-Yeop;Baik, Min-Hoon;Song, Jun-Kyu
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.471-477
    • /
    • 2009
  • An experimental removal of dissolved uranium (U) exsiting as uranyl ion (${UO_2}^{2+}$) was carried out using Shewanella p., iron-reducing bacterium. By the microbial reductive reaction, initial U concentration ($50{\mu}M$) was constantly decreased, and most U were removed from solution after 2 weeks. Major mechanism that U was removed from the solution was adsorption, precipitation and mineralization on the microbe surface. Under the transmission electron microscopy, the U adsorbed on the microbe was observed as being crystallized and eventually enlarged to several ${\mu}m$ sizes of minerals by combining with individual microbes and organic exudates. It seems that such U growth and mineralization on the microbial surface could affect the U behavior in a radioactive waste disposal site. Thus, the biogechemical reaction of metal-reducing bacteria observed in this experiment could give an affirmative measure that the microbial activity may retard U movement in subsurface environment.

Effect of Promoters on the Heme Production in a Recombinant Corynebacterium glutamicum (재조합 Corynebacterium glutamicum으로부터 헴첼 생산에 미치는 프로모터의 효과)

  • Yang, Hyungmo;Kim, Pil
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.337-342
    • /
    • 2019
  • We published that bacterial heme was over-produced in a recombinant Corynebacterium glutamicum expressing 5-aminolevulinic acid synthase ($hemA^+$) under control of a constitutive promoter ($P_{180}$) and the heme-producing C. glutamicum had commercial potentials; as an iron feed additive for swine and as a preservative for lactic acid bacteria. To enhance the heme production, the $hemA^+$ gene was expressed under controls of various promoters in the recombinant C. glutamicum. The $hemA^+$ expression by $P_{gapA}$ (a constitutive glycolytic promoter of glyceraldehyde-3-phosphate dehydrogenase) led 75% increase of heme production while the expression by $P_{H36}$ (a constitutive, very strong synthetic promoter) resulted in 50% decrease compared with the control ($hemA^+$ expression by $P_{180}$ constitutive promoter). The $hemA^+$ expression by a late log-phase activating $P_{sod}$ (an oxidative-stress responding promoter of superoxide dismutase) led 50% greater heme production than the control. The $hemA^+$ expression led by a heat-shock responding chaperone promoter ($P_{dnaK}$) resulted in 121% increase of heme production at the optimized heat-shock conditions. The promoter strength and induction phase are discussed based on the results for the heme production at an industrial scale.

Single-Cell Hemoprotein Diet Changes Adipose Tissue Distributions and Re-Shapes Gut Microbiota in High-Fat Diet-Induced Obese Mice

  • Seungki Lee;Ahyoung Choi;Kyung-Hoon Park;Youngjin Cho;Hyunjin Yoon;Pil Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1648-1656
    • /
    • 2023
  • We have previously observed that feeding with single-cell hemoprotein (heme-SCP) in dogs (1 g/day for 6 days) and broiler chickens (1 ppm for 32 days) increased the proportion of lactic acid bacteria in the gut while reducing their body weights by approximately 1~2%. To define the roles of heme-SCP in modulating body weight and gut microbiota, obese C57BL/6N mice were administered varied heme-SCP concentrations (0, 0.05, and 0.5% heme-SCP in high fat diet) for 28 days. The heme-SCP diet seemed to restrain weight gain till day 14, but the mice gained weight again later, showing no significant differences in weight. However, the heme-SCP-fed mice had stiffer and oilier bodies compared with those of the control mice, which had flabby bodies and dull coats. When mice were dissected at day 10, the obese mice fed with heme-SCP exhibited a reduction in subcutaneous fat with an increase in muscle mass. The effect of heme-SCP on the obesity-associated dyslipidemia tended to be corroborated by the blood parameters (triglyceride, total cholesterol, and C-reactive protein) at day 10, though the correlation was not clear at day 28. Notably, the heme-SCP diet altered gut microbiota, leading to the proliferation of known anti-obesity biomarkers such as Akkermansia, Alistipes, Oscillibacter, Ruminococcus, Roseburia, and Faecalibacterium. This study suggests the potential of heme-SCP as an anti-obesity supplement, which modulates serum biochemistry and gut microbiota in high-fat diet-induced obese mice.