DOI QR코드

DOI QR Code

Single-Cell Hemoprotein Diet Changes Adipose Tissue Distributions and Re-Shapes Gut Microbiota in High-Fat Diet-Induced Obese Mice

  • Seungki Lee (Department of Biotechnology, the Catholic University of Korea) ;
  • Ahyoung Choi (Department of Biotechnology, the Catholic University of Korea) ;
  • Kyung-Hoon Park (HemoLab Ltd. Co.) ;
  • Youngjin Cho (Department of Molecular Science and Technology, Ajou University) ;
  • Hyunjin Yoon (Department of Molecular Science and Technology, Ajou University) ;
  • Pil Kim (Department of Biotechnology, the Catholic University of Korea)
  • Received : 2023.08.28
  • Accepted : 2023.09.20
  • Published : 2023.12.28

Abstract

We have previously observed that feeding with single-cell hemoprotein (heme-SCP) in dogs (1 g/day for 6 days) and broiler chickens (1 ppm for 32 days) increased the proportion of lactic acid bacteria in the gut while reducing their body weights by approximately 1~2%. To define the roles of heme-SCP in modulating body weight and gut microbiota, obese C57BL/6N mice were administered varied heme-SCP concentrations (0, 0.05, and 0.5% heme-SCP in high fat diet) for 28 days. The heme-SCP diet seemed to restrain weight gain till day 14, but the mice gained weight again later, showing no significant differences in weight. However, the heme-SCP-fed mice had stiffer and oilier bodies compared with those of the control mice, which had flabby bodies and dull coats. When mice were dissected at day 10, the obese mice fed with heme-SCP exhibited a reduction in subcutaneous fat with an increase in muscle mass. The effect of heme-SCP on the obesity-associated dyslipidemia tended to be corroborated by the blood parameters (triglyceride, total cholesterol, and C-reactive protein) at day 10, though the correlation was not clear at day 28. Notably, the heme-SCP diet altered gut microbiota, leading to the proliferation of known anti-obesity biomarkers such as Akkermansia, Alistipes, Oscillibacter, Ruminococcus, Roseburia, and Faecalibacterium. This study suggests the potential of heme-SCP as an anti-obesity supplement, which modulates serum biochemistry and gut microbiota in high-fat diet-induced obese mice.

Keywords

Acknowledgement

This work was funded by the Korean Ministry of Science and ICT (NRF2022M3A9I3018121) and Ministry of Agriculture, Food, and Rural Affairs (IPET 118027022SB010). The authors appreciate Dr. Moon, Byung-Heon (CellTech Inc., Cheongju, Korea) for the information (supplementation) provided as it largely supported this study.

References

  1. Alpert MA, Hashimi MW. 1993. Obesity and the heart. Am. J. Med. Sci. 306: 117-123. https://doi.org/10.1097/00000441-199308000-00011
  2. Rimm AA, Werner LH, Yserloo BV, Bernstein RA. 1975. Relationship of ovesity and disease in 73,532 weight-conscious women. Public Health Rep. 90: 44-51.
  3. Calle EE, Thun MJ. 2004. Obesity and cancer. Oncogene 23: 6365-6378. https://doi.org/10.1038/sj.onc.1207751
  4. Kopelman PG. 2000. Obesity as a medical problem. Nature 404: 635-643. https://doi.org/10.1038/35007508
  5. Liu J, Ding H, Yan C, He Z, Zhu H, Ma KY. 2023. Effect of tea catechins on gut microbiota in high fat diet-induced obese mice. J. Sci. Food Agric. 103: 2436-2445.
  6. Chen H, Zhao H, Qi X, Sun Y, Ma Y, Li Q. 2023. Lactobacillus plantarum HF02 alleviates lipid accumulation and intestinal microbiota dysbiosis in high-fat diet-induced obese mice. J. Sci. Food Agric. 103: 4625-4637.
  7. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Backhed F. 2015. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 22: 658-668. https://doi.org/10.1016/j.cmet.2015.07.026
  8. Lam YY, Ha CW, Hoffmann JM, Oscarsson J, Dinudom A, Mather TJ, et al. 2015. Effects of dietary fat profile on gut permeability and microbiota and their relationships with metabolic changes in mice. Obesity (Silver Spring) 23: 1429-1439. https://doi.org/10.1002/oby.21122
  9. Just S, Mondot S, Ecker J, Wegner K, Rath E, Gau L, et al. 2018. The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism. Microbiome 6: 134.
  10. Shreiner AB, Kao JY, Young VB. 2015. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 31: 69-75. https://doi.org/10.1097/MOG.0000000000000139
  11. Yoo W, Zieba JK, Foegeding NJ, Torres TP, Shelton CD, Shealy NG, et al. 2021. High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science 373: 813-818. https://doi.org/10.1126/science.aba3683
  12. Wang B, Qiu J, Lian J, Yang X, Zhou J. 2021. Gut metabolite trimethylamine-N-oxide in atherosclerosis: From mechanism to therapy. Front. Cardiovasc. Med. 8: 723886.
  13. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. 2005. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 102: 11070-11075. https://doi.org/10.1073/pnas.0504978102
  14. Turnbaugh PJ, Gordon JI. 2009. The core gut microbiome, energy balance and obesity. J. Physiol. 587: 4153-4158. https://doi.org/10.1113/jphysiol.2009.174136
  15. Hu HJ, Park SG, Jang HB, Choi MK, Park KH, Kang JH, et al. 2015. Obesity Alters the Microbial Community Profile in Korean Adolescents. PLoS One 10: e0134333.
  16. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101: 15718-15723. https://doi.org/10.1073/pnas.0407076101
  17. Murphy EF, Cotter PD, Healy S, Marques TM, O'Sullivan O, Fouhy F, et al. 2010. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59: 1635-1642. https://doi.org/10.1136/gut.2010.215665
  18. Belzer C. 2022. Nutritional strategies for mucosal health: the interplay between microbes and mucin glycans. Trends Microbiol. 30: 13-21. https://doi.org/10.1016/j.tim.2021.06.003
  19. Brooijmans R, Smit B, Santos F, van Riel J, de Vos WM, Hugenholtz J. 2009. Heme and menaquinone induced electron transport in lactic acid bacteria. Microb. Cell Fact. 8: 28.
  20. Lechardeur D, Cesselin B, Fernandez A, Lamberet G, Garrigues C, Pedersen M, et al. 2011. Using heme as an energy boost for lactic acid bacteria. Curr. Opin. Biotechnol. 22: 143-149. https://doi.org/10.1016/j.copbio.2010.12.001
  21. Baureder M, Hederstedt L. 2013. Heme proteins in lactic acid bacteria. Adv. Microb. Physiol. 62: 1-43. https://doi.org/10.1016/B978-0-12-410515-7.00001-9
  22. Botta A, Barra NG, Lam NH, Chow S, Pantopoulos K, Schertzer JD, et al. 2021. Iron reshapes the gut microbiome and host metabolism. J. Lipid Atheroscler. 10: 160-183. https://doi.org/10.12997/jla.2021.10.2.160
  23. Abbaspour N, Hurrell R, Kelishadi R. 2014. Review on iron and its importance for human health. J. Res. Med. Sci. 19: 164-174.
  24. Lee S, Kim P. 2021. Effect of heme-rich nutrient on anaerobic bacterial growth and survival: a model study on Lactobacillus gasseri. Microbiol. Biotechnol. Lett. 49: 57-64. https://doi.org/10.48022/mbl.2102.02006
  25. Lee S, Choi A, Park K-H, Lee S, Yoon H, Kim P. 2022. Single-cell hemoprotein (heme-SCP) exerts the prebiotic potential to establish a healthy gut microbiota in small pet dogs. Food Sci. Biotechnol. 32: 489-496. https://doi.org/10.1007/s10068-022-01195-9
  26. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617. https://doi.org/10.1099/ijsem.0.001755
  27. Ibrahim MM. 2010. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes. Rev. 11: 11-18. https://doi.org/10.1111/j.1467-789X.2009.00623.x
  28. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. 1999. Elevated C-reactive protein levels in overweight and obese adults. JAMA 282: 2131-2135. https://doi.org/10.1001/jama.282.22.2131
  29. Grundy SM. 2016. Metabolic syndrome update. Trends Cardiovasc. Med. 26: 364-373. https://doi.org/10.1016/j.tcm.2015.10.004
  30. Schoeler M, Caesar R. 2019. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord. 20: 461-472. https://doi.org/10.1007/s11154-019-09512-0
  31. Zhao L, Huang Y, Lu L, Yang W, Huang T, Lin Z, et al. 2018. Saturated long-chain fatty acid-producing bacteria contribute to enhanced colonic motility in rats. Microbiome 6: 107.
  32. Chen P, Torralba M, Tan J, Embree M, Zengler K, Starkel P, et al. 2015. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology 148: 203-214 e216.
  33. Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A, et al. 2012. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature 487: 104-108. https://doi.org/10.1038/nature11225
  34. Chakraborti CK. 2015. New-found link between microbiota and obesity. World J. Gastrointest. Pathophysiol. 6: 110-119. https://doi.org/10.4291/wjgp.v6.i4.110
  35. Amabebe E, Robert FO, Agbalalah T, Orubu ESF. 2020. Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. Br. J. Nutr. 123: 1127-1137. https://doi.org/10.1017/S0007114520000380
  36. Davis CD. 2016. The gut microbiome and its role in obesity. Nutr. Today 51: 167-174. https://doi.org/10.1097/NT.0000000000000167
  37. Carvalho BM, Saad MJ. 2013. Influence of gut microbiota on subclinical inflammation and insulin resistance. Mediators Inflamm. 2013: 986734.
  38. Dostal A, Chassard C, Hilty FM, Zimmermann MB, Jaeggi T, Rossi S, et al. 2012. Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats. J. Nutr. 142: 271-277. https://doi.org/10.3945/jn.111.148643
  39. Pereira DI, Aslam MF, Frazer DM, Schmidt A, Walton GE, McCartney AL, et al. 2015. Dietary iron depletion at weaning imprints low microbiome diversity and this is not recovered with oral Nano Fe(III). Microbiologyopen 4: 12-27. https://doi.org/10.1002/mbo3.213
  40. Anzaldi LL, Skaar EP. 2010. Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect. Immun. 78: 4977-4989. https://doi.org/10.1128/IAI.00613-10
  41. Zeng Q, Li D, He Y, Li Y, Yang Z, Zhao X, et al. 2019. Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities. Sci. Rep. 9: 13424.
  42. Palmas V, Pisanu S, Madau V, Casula E, Deledda A, Cusano R, et al. 2021. Gut microbiota markers associated with obesity and overweight in Italian adults. Sci. Rep. 11: 5532.
  43. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110: 9066-9071. https://doi.org/10.1073/pnas.1219451110
  44. Louis S, Tappu RM, Damms-Machado A, Huson DH, Bischoff SC. 2016. Characterization of the gut microbial community of obese patients following a weight-loss intervention using whole metagenome shotgun sequencing. PLoS One 11: e0149564.
  45. Bischoff SC, Nguyen NK, Seethaler B, Beisner J, Kugler P, Stefan T. 2022. Gut microbiota patterns predicting long-term weight loss success in individuals with obesity undergoing nonsurgical therapy. Nutrients. 14: 3182.
  46. Waters JL, Ley RE. 2019. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 17: 83.
  47. Moschen AR, Gerner RR, Wang J, Klepsch V, Adolph TE, Reider SJ, et al. 2016. Lipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations. Cell Host Microbe. 19: 455-469. https://doi.org/10.1016/j.chom.2016.03.007
  48. Conrad RA, Evenhuis JP, Lipscomb RS, Perez-Pascual D, Stevick RJ, Birkett C, et al. 2022. Flavobacterium columnare ferric iron uptake systems are required for virulence. Front. Cell Infect. Microbiol. 12: 1029833.
  49. Rocha ER, Smith CJ. 2013. Ferritin-like family proteins in the anaerobe Bacteroides fragilis: when an oxygen storm is coming, take your iron to the shelter. Biometals 26: 577-591. https://doi.org/10.1007/s10534-013-9650-2
  50. Dostal A, Lacroix C, Bircher L, Pham VT, Follador R, Zimmermann MB, et al. 2015. Iron modulates butyrate production by a child gut microbiota in vitro. mBio 6: e01453-01415.
  51. Rodriguez-Carrio J, Salazar N, Margolles A, Gonzalez S, Gueimonde M, de Los Reyes-Gavilan CG, et al. 2017. Free fatty acids profiles are related to gut microbiota signatures and short-chain fatty acids. Front. Immunol. 8: 823.
  52. Rao Y, Kuang Z, Li C, Guo S, Xu Y, Zhao D, et al. 2021. Gut Akkermansia muciniphila ameliorates metabolic dysfunction-associated fatty liver disease by regulating the metabolism of L-aspartate via gut-liver axis. Gut Microbes 13: 1-19. https://doi.org/10.1080/19490976.2021.1927633
  53. Constante M, Fragoso G, Calve A, Samba-Mondonga M, Santos MM. 2017. Dietary heme induces gut dysbiosis, aggravates colitis, and potentiates the development of adenomas in mice. Front. Microbiol. 8: 1809.
  54. White DL, Collinson A. 2013. Red meat, dietary heme iron, and risk of type 2 diabetes: the involvement of advanced lipoxidation endproducts. Adv. Nutr. 4: 403-411. https://doi.org/10.3945/an.113.003681
  55. N IJ, Derrien M, van Doorn GM, Rijnierse A, van den Bogert B, Muller M, et al. 2012. Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk. PLoS One 7: e49868.
  56. Schaer DJ, Buehler PW, Alayash AI, Belcher JD, Vercellotti GM. 2013. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 121: 1276-1284. https://doi.org/10.1182/blood-2012-11-451229
  57. Ju TJ, Kwon WY, Kim YW, Kim JY, Kim YD, Lee IK, et al. 2014. Hemin improves insulin sensitivity in skeletal muscle in high fat-fed mice. J. Pharmacol. Sci. 126: 115-125. https://doi.org/10.1254/jphs.14003FP