Identification of the Hybrid Cluster Protein, HCP, from Amitochondriate Eukaryotes and Its Phylogenetic Implications

  • Han, Kyu-Lee (Department of Parasitology and Institute of Tropical Medicine, The Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Yong, Tai-Soon (Department of Parasitology and Institute of Tropical Medicine, The Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Ryu, Jae-Sook (Department of Parasitology, Hanyang University College of Medicine) ;
  • Hwang, Ui-Wook (Department of Biology, Teachers College, Kyungbook National University) ;
  • Park, Soon-Jung (Department of Parasitology and Institute of Tropical Medicine, The Brain Korea 21 Project, Yonsei University College of Medicine)
  • Published : 2004.02.01

Abstract

Hybrid cluster protein (HCP) was investigated because of its unique iron-sulfur clusters, which have been found in bacteria and archaea. Here, HCP homologous proteins from the third domain, 'eukarya'(3 amitochondriate protozoans, Giardia lamblia, Entamoeba histolytica, and Trichomonas vaginalis), were identified. All three amitochondriate protozoan HCPs (GlHCP, EhHCP, and TvHCP) belonged to Class I on the basis of two key characters, the cysteine spacing, Cys-(Xaa)₂Cys(Xaa)/sub 7-8/-Cys(Xaa)/sub 5/-Cys, and the absence of N-terminal deletion characteristic to the Class III. In phylogenetic analysis performed with amino acid sequences of 3 eukaryal, 5 bacterial, and 4 archaeal HCPs, the maximum likelihood (ML) tree indicated that TvHCP was clustered with Class I HCPs, whereas the other two HCPs (GlHCP and EhHCP) formed an independent clade with a high bootstrapping value (96%) not belonging to any previously recognized HCP class. In spite of the relatively lower bootstrapping value (61%), the position of the new eukaryal GlHCP-EhHCP clade was close to Class I, including the TvHCP, and Classes II and III were closely related with each other. The finding of eukaryal HCPs would help to understand the evolutionary history of HCP.

Keywords

References

  1. Altschul, S. F., T. I. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402
  2. Arendsen, A. F., J. Hadden, G. Card, A. S. McAlpine, S. Bailey, V. Zaitsev, P. F. Lindley, M. Krockel, A. X. Trautwein, M. C. Freiters, J. M. Charnock, C. D. Garner, S. J. Marritt, A. J. Thompson, I. M. Kooter, M. K. Johnson, W. A. M. van den Berg, W. A. M. van Dongen, and W. R. Hagen. 1998. The prismane protein resolved: X-ray structure at 1.7 Å and multiple spectroscopy of two novel 4Fe clusters. J. Biol. Inorg. Chem. 3: 81-95
  3. Briolat, V. and G. Reysset. 2002. Identification of the Clostridium perfringens genes involved in adaptive response to oxidative stress. J. Bacteriol. 184: 2333-2343
  4. Diamond, L. S. 1957. The establishment of various trichomonads of animals and man in axenic cultures. J. Parasitol. 43: 488-490
  5. Diamond, L. S., D. R. Hariovo, and C. C. C. Unnick. 1978. A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Trans. Royal Soc. Trop. Med. Hyg. 72: 431-432
  6. Keister, D. B. 1983. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans. Royal Soc. Trop. Med. Hyg. 77: 487-488 https://doi.org/10.1016/0035-9203(83)90120-7
  7. Kim, K. S., J. Y. Oh, Y. W. Jeong, J. W. Cho, J. C. Park, D. T. Cho, and J. C. Lee. 2002. Epidemiological typing and characterization of dfr genes of Shigella sonnei isolates in Korea during the last two decades. J. Microbiol. Biotechnol. 12: 106-113
  8. Narcisi, E. M., J. J. Paulin, and M. Fechheimer. 1994. Presence and localization of vinculin in Giardia. J. Parasitol. 80: 468-473
  9. Riley, D. E. and J. N. Krieger. 1992. DNA isolation from Trichomonas vaginalis and other nuclease-rich protozoa. Mol. Biochem. Parasitol. 51: 161-164
  10. Ryu, J. S., D. Y. Min, M. C. Kim, N. S. Kim, and M. H. Shin. 2001. In vitro activities of 2,2-dipyridyl against Trichomonas vaginalis, Candida albicans, and Gardnerella vaginalis. J. Microbiol. Biotechnol. 11: 124-130
  11. Schmidt, H. A., K. Strimmer, M. Vingron, and A. von Haeseler. 2002. TREE-PUZZLE: Maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502-504 https://doi.org/10.1093/bioinformatics/18.3.502
  12. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 2000. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment acid by quality analysis tools. Nucleic Acids Res. 25: 4876- 4882
  13. Van den Berg, W. A. M., W. R. Hagen, and W. A. M. van Dongen. 2000. The hybrid-cluster protein (prismane protein) from Escherichia coli. Characterization of the hybrid-cluster protein, redox properties of the [2Fe-2S] and [4Fe-2S-2-O] clusters and identification of an associated NADH oxidoreductase containing FAD and [2Fe-2S]. Eur. J. Biochem. 267: 666-676.
  14. Wolfe, M. T., J. Heo, J. S. Garavelli, and P. W. Ludden. 2002. Hydroxylamine reductase activity of the hybrid cluster protein from Escherichia coli. J. Bacteriol. 184: 5898- 5902
  15. Yang, H., H. J. Chung, T. Yong, B. Lee, and S. Park. 2003. Identification of an encystations-specific transcription factor, Myb protein in Giardia lamblia. Mol. Biochem. Parasitol. 128: 167-174
  16. Yoon, S. I., S. Y. Kim, Y. W. Lim, and H. S. Jung. 2003. Phylogenetic evaluation of stereoid fungi. J. Microbiol. Biotechnol. 13: 406-414