• Title/Summary/Keyword: ionospheric variations

Search Result 48, Processing Time 0.02 seconds

TEC VARIATIONS OVER KOREAN PENINSULA DURING MAGNETIC STORM (남쪽방향 행성간 자기장에 의해 발생한 자기 폭풍 동안 한반도 상공의 총 전자수 함유량 변화)

  • Ji, E.Y.;Choi, B.K.;Kim, K.H.;Lee, D.H.;Cho, J.H.;Chung, J.K.;Park, J.U.
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.1
    • /
    • pp.33-42
    • /
    • 2008
  • By analyzing the observations from a number of ground- and space-based instruments, including ionosonde, magnetometers, and ACE interplanetary data, we examine the response of the ionospheric TEC over Korea during 2003 magnetic storms. We found that the variation of vertical TEC is correlated with the southward turning of the interplanetary magnetic field $B_z$. It is suggested that the electric fields produced by the dynamo process in the high-latitude region and the prompt penetration in the low- latitude region are responsible for TEC increases. During the June 16 event, dayside TEC values increase more than 15%. And the ionospheric F2-layer peak height (hmF2) was ${\sim}300km$ higher and the vertical $E{\times}B$ drift (estimated from ground-based magnetometer equatorial electrojet delta H) showed downward drift, which may be due to the ionospheric disturbance dynamo electric field produced by the large amount of energy dissipation into high-latitude regions. In contrast, during November 20 event, the nightside TEC increases may be due to the prompt penetration westward electric field. The ionospheric F2-layer peak height was below 200km and the vertical $E{\times}B$ drift showed downward drift. Also, a strong correlation is observed between enhanced vertical TEC and enhaaced interplanetary electric field. It is shown that, even though TEC increases are caused by the different processes, the electric field disturbances in the ionosphere play an important role in the variation of TEC over Korea.

Seasonal Characteristics of the Longitudinal Wavenumber-4 Structure in the Equatorial Ionospheric Anomaly

  • Kim, E.;Jee, G.;Kim, Y.H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.335-346
    • /
    • 2008
  • Using the global total electron contents (TEC) measured by the TOPEX satellite from Aug. 1992 to Oct. 2005, we investigate the variations of the longitudinal wavenumber-4 (LW-4) structure in the equatorial anomaly (EA) crests with season, local time, and solar activity. Our study shows that the LW-4 structure in the EA crests ($5{\sim}20^{\circ}$ MLAT in both hemispheres) has clear four peaks at fixed longitude sectors during the daytime for both equinoxes and June solstice. In spite of being called a wavelike structure, however, the magnitudes and spatial intervals of the four peaks are far from being the same or regular. After sunset, the four-peak structure begins to move eastward with gradual weakening in its amplitude during equinoxes and this weakening proceeds much faster during June solstice. Interestingly, the longitudinal variations during December solstice do not show clear four-peak structure. All these features of the LW-4 structure are almost the same for both low and high solar activity conditions although the ion densities are greatly enhanced from low to high solar activities. With the irrelevancy of the magnetic activity in the LW-4, this implies that the large changes of the upper atmospheric ion densities, one of the important factors for ion-neutral interactions, have little effect on the formation of the LW-4 structure. On the other hand, we found that the monthly variation of the LW-4 is remarkably similar to that of the zonal component of wavenumber-3 diurnal tides at low latitudes, which implies that the lower atmospheric tidal forcing, transferred to the upper atmosphere, seems to have a dominant role in producing the LW-4 structure in the EA crests via the E-region dynamo.

Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit

  • Hwang, Junga;Kim, Hyangpyo;Park, Jaeheung;Lee, Jaejin
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE). The SNIPE mission consists of four nanosatellites (~10 kg), which will be launched into a polar orbit at an altitude of 600 km (TBD) in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a high-end formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC) waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.

Recovery of Lithospheric Magnetic Component in the Satellite Magnetometer Observations of East Asia (인공위성 자력계에서 관측된 동아시아 암권의 지자기이상)

  • Kim, Jeong-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.157-168
    • /
    • 2002
  • Improved procedures were implemented in the production of the lithospheric magnetic anomaly map from Magsat satellite magnetometer data of East Asia between $90^{\circ}E-150^{\circ}E$ and $10^{\circ}S-50^{\circ}N$. Procedures included more effective selection of the do·it and dawn tracks, ring current correction, and separation of core field and external field effects. External field reductions included an ionospheric correction and pass-by-pass correlation analysis. Track-line noise effects were reduced by spectral reconstruction of the dusk and dawn data sets. The total field magnetic anomalies were differentially-reduced-to-the-pole to minimize distortion s between satellite magnetic anomalies and their geological sources caused by corefield variations over the study area. Aeromagnetic anomalies were correlated with Magsat magnetic anomalies at the satellite altitude to test the lithospheric veracity of anomalies in these two data sets. The aeromagnetic anomalies were low-pass filtered to eliminate high frequency components that may not be shown at the satellite altitude. Although the two maps have a low CC of 0.243, there are many features that are directly correlated (peak-to-peak and trough-to-trough). The low CC between the two maps was generated by the combination of directly- and inversely-correlative anomaly features between them. It is very difficult to discriminate directly, inversely, and nully correlative features in these two anomaly maps because features are complicatedly correlated due to the depth and superposition of the anomaly sources. In general, the lithospheric magnetic components were recovered successfully from satellite magnetometer observations and correlated well with aeromagnetic anomalies in the study area.

SNIPE Mission for Space Weather Research (우주날씨 관측을 위한 큐브위성 도요샛 임무)

  • Lee, Jaejin;Soh, Jongdae;Park, Jaehung;Yang, Tae-Yong;Song, Ho Sub;Hwang, Junga;Kwak, Young-Sil;Park, Won-Kee
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.104-120
    • /
    • 2022
  • The Small Scale magNetospheric and Ionospheric Plasma Experiment (SNIPE)'s scientific goal is to observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere. The four 6U CubeSats (~10 kg) will be launched into a polar orbit at ~500 km. The distances of each satellite will be controlled from 10 km to more than ~1,000 km by the formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, Solid-State Telescopes(SST), Magnetometers(Mag), and Langmuir Probes(LP). All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium communication modules provide an opportunity to upload emergency commands to change operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather. The formation flying CubeSat constellation, the SNIPE mission, will be launched by Soyuz-2 at Baikonur Cosmodrome in 2023.

Variation of Floating Potential in the Topside Ionosphere Observed by STSAT-1

  • Lee, Junhyun;Lee, Ensang;Lee, Jaejin;Kim, Khan-Hyuk;Seon, Jongho;Lee, Dong-Hun;Jin, Ho;Kim, Eung-Hyun;Jeon, Hyun-Jin;Lim, Seong-Bin;Kim, Taeyoun;Jang, Jaewoong;Jang, Kyung-Duk;Ryu, Kwangsun
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.311-315
    • /
    • 2014
  • In this study, we investigated the effect of space plasmas on the floating potential variation of a low-altitude, polar-orbiting satellite using the Langmuir Probe (LP) measurement onboard the STSAT-1 spacecraft. We focused on small potential drops, for which the estimation of plasma density and temperature from LP is available. The floating potential varied according to the variations of plasma density and temperature, similar to the previously reported observations. Most of the potential drops occurred around the nightside auroral region. However, unlike the previous studies where large potential drops were observed with the precipitation of auroral electrons, the potential drops occurred before or after the precipitation of auroral electrons. Statistical analysis shows that the potential drops have good correlation with the temperature increase of cold electrons, which suggests the small potential drops be mainly controlled by the cold ionospheric plasmas.

Ground-based Observations of the Polar Region Space Environment at the Jang Bogo Station, Antarctica

  • Kwon, Hyuck-Jin;Lee, Changsup;Jee, Geonhwa;Ham, Young-Bae;Kim, Jeong-Han;Kim, Yong Ha;Kim, Khan-Hyuk;Wu, Qian;Bullett, Terence;Oh, Suyeon;Kwak, Young-Sil
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.185-193
    • /
    • 2018
  • Jang Bogo Station (JBS), the second Korean Antarctic research station, was established in Terra Nova Bay, Antarctica ($74.62^{\circ}S$ $164.22^{\circ}E$) in February 2014 in order to expand the Korea Polar Research Institute (KOPRI) research capabilities. One of the main research areas at JBS is space environmental research. The goal of the research is to better understand the general characteristics of the polar region ionosphere and thermosphere and their responses to solar wind and the magnetosphere. Ground-based observations at JBS for upper atmospheric wind and temperature measurements using the Fabry-Perot Interferometer (FPI) began in March 2014. Ionospheric radar (VIPIR) measurements have been collected since 2015 to monitor the state of the polar ionosphere for electron density height profiles, horizontal density gradients, and ion drifts. To investigate the magnetosphere and geomagnetic field variations, a search-coil magnetometer and vector magnetometer were installed in 2017 and 2018, respectively. Since JBS is positioned in an ideal location for auroral observations, we installed an auroral all-sky imager with a color sensor in January 2018 to study substorms as well as auroras. In addition to these observations, we are also operating a proton auroral imager, airglow imager, global positioning system total electron content (GPS TEC)/scintillation monitor, and neutron monitor in collaboration with other institutes. In this article, we briefly introduce the observational activities performed at JBS and the preliminary results of these observations.

Unusual Enhancements of NmF2 in Anyang Ionosonde Data

  • Yun, Jongyeon;Kim, Yong Ha;Kim, Eojin;Kwak, Young-Sil;Hong, Sunhak
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.223-230
    • /
    • 2013
  • Sudden enhancements of daytime NmF2 appeared in Anyang ionosonde data during summer seasons in 2006-2007. In order to investigate the causes of this unusual enhancement, we compared Anyang NmF2's with the total electron contents (GPS TECs) observed at Daejeon, and also with ionosonde data at at mid-latitude stations. First, we found no similar increase in Daejeon GPS TEC when the sudden enhancements of Anyang NmF2 occurred. Second, we investigated NmF2's observed at other ionosonde stations that use the same ionosonde model and auto-scaling program as the Anyang ionosonde. We found similar enhancements of NmF2 at these ionosonde stations. Moreover, the analysis of ionograms from Athens and Rome showed that there were sporadic-E layers with high electron density during the enhancements in NmF2. The auto-scaling program (ARTIST 4.5) used seems to recognize sporadic-E layer echoes as a F2 layer trace, resulting in the erroneous critical frequency of F2 layer (foF2). Other versions of the ARTIST scaling program also seem to produce similar erroneous results. Therefore we conclude that the sudden enhancements of NmF2 in Anyang data were due to the misrecognition of sporadic-E echoes as a F-layer by the auto-scaling program. We also noticed that although the scaling program flagged confidence level (C-level) of an ionogram as uncertain when a sporadic-E layer occurs, it still automatically computed erroneous foF2's. Therefore one should check the confidence level before using long term ionosonde data that were produced by an auto-scaling program.