Recovery of Lithospheric Magnetic Component in the Satellite Magnetometer Observations of East Asia

인공위성 자력계에서 관측된 동아시아 암권의 지자기이상

  • Kim, Jeong-Woo (Dept. of Geoinformation Sciences and Research Inst. of Geoinformatics & Geophysics, Sejong University)
  • 김정우 (세종대학교 지구정보과학과/지구정보연구소)
  • Published : 2002.08.01

Abstract

Improved procedures were implemented in the production of the lithospheric magnetic anomaly map from Magsat satellite magnetometer data of East Asia between $90^{\circ}E-150^{\circ}E$ and $10^{\circ}S-50^{\circ}N$. Procedures included more effective selection of the do·it and dawn tracks, ring current correction, and separation of core field and external field effects. External field reductions included an ionospheric correction and pass-by-pass correlation analysis. Track-line noise effects were reduced by spectral reconstruction of the dusk and dawn data sets. The total field magnetic anomalies were differentially-reduced-to-the-pole to minimize distortion s between satellite magnetic anomalies and their geological sources caused by corefield variations over the study area. Aeromagnetic anomalies were correlated with Magsat magnetic anomalies at the satellite altitude to test the lithospheric veracity of anomalies in these two data sets. The aeromagnetic anomalies were low-pass filtered to eliminate high frequency components that may not be shown at the satellite altitude. Although the two maps have a low CC of 0.243, there are many features that are directly correlated (peak-to-peak and trough-to-trough). The low CC between the two maps was generated by the combination of directly- and inversely-correlative anomaly features between them. It is very difficult to discriminate directly, inversely, and nully correlative features in these two anomaly maps because features are complicatedly correlated due to the depth and superposition of the anomaly sources. In general, the lithospheric magnetic components were recovered successfully from satellite magnetometer observations and correlated well with aeromagnetic anomalies in the study area.

Magsat 인공위성의 자력계로부터 관측된 동아시아 (동경90도-50도, 남위10도-북위50도) 암권의 자기이상을 추출하기 위한 연구를 수행하였다. 이를 위해 ring current correction, ionospheric correction, pass-by-pass correlation등을 실시하였고, 위성트랙 잡음을 효율적으로 제거하기 위한 spectral reconstruction을 실시하였다. 최종적으로 추출된 자기이상의 신뢰도를 검증하기 위해 항공자기이상과 대비하였고, 이를 위해 항공자기이상에 low-pass필터를 적용하여 인공위성 고도에서 관측 불가능한 고주파성분을 제거하였다. 결과적으로 위성자기이상과 항공자기이상은 0.243의 비교적 낮은 상관관계를 보이나 연구지역내 많은 부분에서 양(+)의 상관관계를 갖고 있음이 밝혀졌다. 일반적으로 낮은 상관계수는 각 주파수별 성분의 양과 음의 장관계수가 혼합되어 나타나며, 따라서 본 연구와 같은 포텐셜상의 경우에는 이상체의 심도 및 누중 때문에 양과 음의 상관관계를 갖는 이상체를 분류하는 것이 매우 어렵다. 본 연구에서는 인공위성 자력계 관측값으로부터 연구지역 암권의 자기이상을 성공적으로 추출하였으며 항공자기이상과도 양호한 상관관계를 갖고 있음이 밝혀졌다.

Keywords

References

  1. Achache J., A. Abtout, and J. L. Mouel, 1987, the Downward Countinuation of the Magsat Crustal Anomaly Field over Southeast Asia: J. Geophys. Res., 92(B11), 11584-11596
  2. Alsdorf, D. E., R. R. B. von Frese, J. Arkani-Hamed, and H. Noltimier, 1994a, Separation of lithosphehc, extemal, and core components of the polar geomagnetic field at satellite altitude: J. Geophys. Res., 99, 4655-4667
  3. Alsdorf, D. E., R. R. B. von Frese, and the Geodynamic Branch, 1994b, Fortran programs to process Magsat data for lithospheric, extemal field, and residual core components, NASA Technical Memorandum 104612, Goddard Space Flight Center, Greenbelt, Maryland
  4. Arkani-Hamed and D. W. Strangway, 1986, Effective magnetic susceptibility anomalies of the oceanic upper mantle derived from Magsat data: J. Geophys. Res
  5. Arkani-Hamed, J., S. K. Zhao, and D. W. Strangway, 1988, Geophysical interpretation of the magnetic anomalies of China derived from Magsat data: 95, 347-359
  6. Cain, J. C., Z. Wang, C. Kluth, and D. R. Schmitz, 1989, Derivation of a geomagnetic model to n=63: Geophys. J., 97, 431-441
  7. Cohen, Y. and J. Achache, 1990, New global vector magnetic anomaly maps dericed from Magsat data: J. Geophys. Res., 95, 10783-10800
  8. Geological Survey of Japan and CCOP, 1996, Magnetic anomaly map of East Asia 1: 4,000,000, CD-Rom Version, Geological Survey of Japan
  9. Goyal, H. K., R. R. B. von Frese, W. J. Hinze, and D. N. Ravat, 1990, Statistical prediction of satellite magnetic anomalies: Geophys. J. Int., 109, 101-111
  10. Kim, J. W., 1996, Spectral correlation of satellite and airborne geopotential fie1d measurements for lithospheric analysis, Ph.D. Dissertation (unpubl.), Dept. of Geological Sciences, The Ohio State University: 171p
  11. Kim, J. W., P. T. Taylor, and R. R. B. von Frese, 1992, Lithospheric Magnetic Anomalies of the Arabian Plate: EOS (Am. Geophys. Union Trans.), 73(43), p. 140
  12. Kim, J. W., R. R. B. von Frese, P. T. Taylor, and D. N. Ravat, 1994, Lithospheric Modeling of Regional Magnetic and Gravity Anomalies of the Arabian Plate: EOS (Am. Geophys. Union Trans.), 75(16), p. 131
  13. Kim, J. W., J.-H. Kim, R. R. B. von Frese, D. R. Roman, and K. C. Jezek, 1998, Spectral attenuation of track-line noise: Geophys. Res. Lett, 25(2), p. 187-190
  14. Kim, J. W., R. R. B. von Frese, and P. T. Taylor, 1995a, Comparison of Satellite and Airborne Magnetic Anomalies Over the Russian Arctic: EOS (Am. Geophys. Union Trans.), 76(17), p. 273-274
  15. Kim, J. W., R. R. B. von Frese, P. T. Taylor, and I. C. F. Stewart, 1995b, Satellite and Aeromagnetic Anomaly Data Over the Saudi Arabian Plate: A Comparison and Interpretation, International Union of Geodesy and Geophysics: XXI General Assembly (Boulder, CO), Abstracts: v.B, p. B79
  16. Kim, J. W., W. K. Kim, and H.-Y. Kim, 2000, Wavenumber correlation analysis of geopotential anomalies: J. Korea Econ. Environ. Geol., 33(2), p. 111-116
  17. Langel, R. A., J. Berbert, T. Jennings, and R. Homer, 1981, Magsat data processing: A report for Investigators, NASA Technical Memorandum 82160, Goddard Space Flight Center, Greenbelt, Maryland
  18. Langel, R. A., 1985, Introduction to the special issue: A perspective on Magsat results: J. Geophys. Res., 90(B3), p. 2441-2444
  19. Langel, R. A. and R. E. Sweeney, 1971, Asymmetric ring current at twilight local time: J. Geophys. Res., 76(19), p. 4420-4427
  20. Langel, R. A. and R. H. Estes, 1985, The near-earth geomagnetic field at 1980 determined from Magsat data: J. Geophys. Res., 90, 2495-2510
  21. Mayhew, M. A., 1985, Cmie Isotherm Surface Inferred From High-Altitude Magnetic Anomaly Data: J. Geophys. Res., 90, 2647-2654
  22. Meyer, J., J. H. Hufer, M. Siebert, and A. Hahn, 1985, On the identification of Magsat anomaly charts as crustal part of internal field: J. Geophys. Res., 90, 2537-2542
  23. Potemra, R. A., F. F. Mobley, and L. D. Exkard, 1980, The geomagnetic field and its measurement: Introduction and Magnetic Field Satellite (Magsat) glossary: Johns Hopkins APL Technical Digest, 1(3), p. 162-170
  24. Ravat, D. and W. J. Hinze, 1993, Consideration of Varations in Ionospheric Field Effects in Mapping Equatorial Lithospheric Magsat Magnetic Anomalies: Geophys. J. Int
  25. Regan, R. D., J. C. Cain, and W. M. Davis, 1975, A global magnetic anomaly map: J. Geophys. Res., 80, 794-802
  26. Smith, W. H. F. and P. Wessel, 1990 Gridding with continuous curvature splines in tension: Geophysics, 55, 293-305
  27. von Frese, R. R. B., W. J. Hinze, C. A. McGue, and D. N. Ravat, 1989, Use of satellite magnetic anomalies for tectonic lineament studies: Memoirs Geological Society of India, 12, 171-180
  28. von Frese, R. R. B., M. B. Jones, J. W. Kim, and J.-H. Kim, 1997a, Analysis of anomaly correlations: Geophysics, 62(1), p. 342-351
  29. von Frese, R. R. B., M. B. Jones, J. W. Kim, and W. S. Li, 1997b, Spectral correladon of magnetic and gravity anomalies of Ohio: Geophysics, 62(1), p. 365-380
  30. Wasilewski, P. J., H. H. Thomas, and M. A. Mayhew, 1979, The Moho as a magnetic boundary: Geophys. Res. Lett., 6, 541-544
  31. Wasilewski, P. J. and M. A. Mayhew, 1992, The Moho as a Magnetic Boundary Revisited: Geophys. Res. Lett., 19(22), 2259-2262
  32. Yanagisawa, M. and M. Kono, 1985, Mean ionospheric field correction for Magsat data: J. Geophys. Res., 90, 2527-2536