• Title/Summary/Keyword: ionogram

Search Result 6, Processing Time 0.022 seconds

Conversion of Oblique Ionogram between Jeju and Icheon to Vertical Equivalent at Mid-point (제주-이천간 전리층 사입사 데이터의 등가 직입사 변환)

  • You, Moon-Hee;Lee, Hwan-Sang;Jeong, Cheol-Oh;Jo, Jin-Ho;Lee, Yong-Min
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.3
    • /
    • pp.1-5
    • /
    • 2013
  • In this paper, we present a conversion algorithm of the oblique ionogram obtained from Jeju and Icheon to the equivalent vertical ionogram of the path mid-point, based on some equivalence theorems between the vertical sounding and the oblique sounding for the ionosphere. And in order to verify the conversion algorithm under the condition of no vertical ionosonde at the mid-point on the test path, the equivalent vertical ionograms are compared to the real vertical ionograms measured adjacently in space-time. The comparison results show that the conversion algorithm performs well for the short-path oblique ionogram and the equivalent vertical ionograms could be applied to get the electron density profiles at the mid-point.

A Study on the Ionogram Inversion Algorithm Using Mean Value Theorem (평균치 정리를 이용한 진리층관측도 변환 알고리즘에 관한 연구)

  • Park, Hyung Rae;Chae, Jong Seok;Lee, Hyuck Jae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.2
    • /
    • pp.201-206
    • /
    • 1987
  • A description of ionogram inversion algorithm developed for obtaining ionospheric electron density profile from ionospheric sounding datas (ionograms) in real time using mean value theorem is given and the methods for determining starting points and correcting valley effects are considered. The results derived from this algorithm are compared with the theoretically simulated datas, and the real electron density profiles from the measured ionograms taken at Radio research Laboratory in Korea are given to show its practical use.

  • PDF

Manual Scaling of Ionograms Measured at Jeju (33.4°N, 126.3°E) Throughout 2012

  • Jeong, Se-Heon;Kim, Yong Ha;Kim, Ki-nam
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.143-149
    • /
    • 2018
  • The ionosphere has been monitored by ionosondes for over five decades since the 1960s in Korea. An ionosonde typically produces an ionogram that displays radio echoes in the frequency-range plane. The trace of echoes in the plane can be read either manually or automatically to derive useful ionospheric parameters such as foF2 (peak frequency of the F2 layer) and hmF2 (peak height of the F2 layer). Monitoring of the ionosphere should be routinely performed in a given time cadence, and thus, automatic scaling of an ionogram is generally executed to obtain ionospheric parameters. However, an auto-scaling program can generate undesirable results that significantly misrepresent the ionosphere. In order to verify the degree of misrepresentation by an auto-scaling program, we performed manual scaling of all 35,136 ionograms measured at Jeju ($33.43^{\circ}N$, $126.30^{\circ}E$) throughout 2012. We compared our manually scaled parameters (foF2 and hmF2) with auto-scaled parameters that were obtained via the ARTIST5002 program. We classified five cases in terms of the erroneous scaling performed by the program. The results of the comparison indicate that the average differences with respect to foF2 and hmF2 between the two methods approximately correspond to 0.03 MHz and 4.1 km, respectively with corresponding standard deviations of 0.12 MHz and 9.58 km. Overall, 36 % of the auto-scaled results differ from the manually scaled results by the first decimal number. Therefore, future studies should be aware of the quality of auto-scaled parameters obtained via ARTIST5002. Hence, the results of the study recommend the use of manually scaled parameters (if available) for any serious applications.

Unusual Enhancements of NmF2 in Anyang Ionosonde Data

  • Yun, Jongyeon;Kim, Yong Ha;Kim, Eojin;Kwak, Young-Sil;Hong, Sunhak
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.223-230
    • /
    • 2013
  • Sudden enhancements of daytime NmF2 appeared in Anyang ionosonde data during summer seasons in 2006-2007. In order to investigate the causes of this unusual enhancement, we compared Anyang NmF2's with the total electron contents (GPS TECs) observed at Daejeon, and also with ionosonde data at at mid-latitude stations. First, we found no similar increase in Daejeon GPS TEC when the sudden enhancements of Anyang NmF2 occurred. Second, we investigated NmF2's observed at other ionosonde stations that use the same ionosonde model and auto-scaling program as the Anyang ionosonde. We found similar enhancements of NmF2 at these ionosonde stations. Moreover, the analysis of ionograms from Athens and Rome showed that there were sporadic-E layers with high electron density during the enhancements in NmF2. The auto-scaling program (ARTIST 4.5) used seems to recognize sporadic-E layer echoes as a F2 layer trace, resulting in the erroneous critical frequency of F2 layer (foF2). Other versions of the ARTIST scaling program also seem to produce similar erroneous results. Therefore we conclude that the sudden enhancements of NmF2 in Anyang data were due to the misrecognition of sporadic-E echoes as a F-layer by the auto-scaling program. We also noticed that although the scaling program flagged confidence level (C-level) of an ionogram as uncertain when a sporadic-E layer occurs, it still automatically computed erroneous foF2's. Therefore one should check the confidence level before using long term ionosonde data that were produced by an auto-scaling program.

EFFECTS OF SOLAR ACTIVITY AND SPACE ENVIRONMENT IN 2003 OCT. (2003년 10월의 태양활동과 우주환경의 영향)

  • Cho, Kyung-Seok;Moon, Yong-Jae;Kim, Yeon-Han;Choi, Sung-Whan;Kim, Rok-Soon;Park, Jong-Uk;Kim, Hae-Dong;Lim, Mu-Taek;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.315-328
    • /
    • 2004
  • In this paper, we present a good example of extreme solar and geomagnetic activities from October to November, 2003. These activities are characterized by very large sunspot groups, X-class solar flares, strong particle events, and huge geomagnetic storms. We discuss ground-based and space-based data in terms of space weather scales. Especially, we present several solar and geomagnetic disturbance data produced in Korea : sunspots, geo-magnetograms, aurora, Ionogram, and Total Electron Content (TEC) map by GPS data. Finally, we introduce some examples of the satellite orbit and communication effects caused by these activities; e.g., the disturbances of the KOMPSAT-1 operational orbit and HF communication.

Gadanki radar observations of F-region irregularities during June solstice of solar minimum: First results and preliminary analysis

  • Kumar, D.V. Phani;Patra, A.K.;Kwak, Y.S.;Pant, T.K.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.38.1-38.1
    • /
    • 2009
  • In this paper we present the first results of summer-time F region irregularities during low solar condition observed using the Gadanki MST radar. Echoes were observed on all 20 nights of radar observations and were mostly confined to the post-midnight hours. Echo morphology is very different from the equinoxial post-sunset plume-like features reported earlier from Gadanki. Echo SNRs are lower by 25 dB than their equinoxial post-sunset counterpart, and are quite comparable to the equinoxial irregularities in the post-midnight hours, which are essentially the decaying post-sunset irregularities. The Doppler velocities, which lie in the range of $\pm$ 100 m s-1, show upward/northward motion of the irregularities during the initial phase in contrast to the observed predominant downward/southward velocities associated with the decaying equinoxial post-midnight F region irregularities. Spectral widths of the summer echoes, which are well below 50 m s-1 and are very similar to those of the decaying equinoxial irregularities, represent the presence of weak plasma turbulence. Simultaneous observations made using a collocated ionosonde show no ionogram trace during 2200-0530 LT except for a few occasions. Weak frequency type spread F observed during midnight hours occurred without prior occurrence of range spread F. Concurrent ionosonde observations made from magnetic equatorial location Trivandrum also show very similar result and thus no height rise of the F layer during the midnight hours could be monitored. The preliminary analysis suggests that the post-midnight irregularities reported here are mostly freshly generated ones. The observations are discussed in the light of other observational results reported earlier and the current under standing on the post-midnight occurrence F region irregularities in summer.

  • PDF