• Title/Summary/Keyword: ionic interactions

Search Result 89, Processing Time 0.024 seconds

Effects of Polymer-Drug Interactions on Drug Release from Sustained Release Tablets (서방정으로부터의 약물 용출에 대한 고분자-약물 상호작용의 영향)

  • Kim, Haeng-Ja;Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.2
    • /
    • pp.119-124
    • /
    • 1996
  • To develop oral controlled release dosage forms, ionic interactions between polymers and drugs were evaluated. Hydroxypropylmethyl cellulose and carboxymethylene were used as model nonionic and ionic polymers, respectively. 5-fluorouracil, propranolol-HCl and sodium salicylate were selected as model nonionic, cationic and anionic, respectively. Polymer-drug mixtures were compressed into tablets and drug release kinetics from these tablets were determined. Drug release from the tablets made of the nonionic polymer was not affected by the charge of drugs, rather, was regulated by the solubility of drugs in different pH releasing media. However, drug release kinetics were significantly affected when drug-polymer ionic interactions exist. Enhanced drug release was observed from anionic drug-anionic polymer tablets due to ionic repulsion, whereas drug release was retarded in cationic drug-anionic polymer tablets owing to ionic attractive force. Therefore, the results suggested that the polymer-drug interactions are important factors in designing controlled release dosage forms.

  • PDF

Drug Diomacromolecule interaction IX

  • Kim, Chong-Kook;Won, Young-Han;Kim, Sang-Nim
    • Archives of Pharmacal Research
    • /
    • v.7 no.2
    • /
    • pp.95-99
    • /
    • 1984
  • Binding of sulfaethidole to bovine serum albumin (BSA) was studied by circular dichroism. The effects of pH and ionic strength on the binding of sulfaethidole to BSA were investigated. It was found that one primary binding site on the BSAM was capable of inducing optical activity in the presence of sulfaethidole. Enhancement of the induced ellipticity of sulfaethidole upon addition to BSA was not much affected by the change of pH and ionic strength. Taking the effects of pH and ionic strength into consideration, it seems that the binding of sulfaethidole to BSA was not much affected by electrostatic and ionic interactions. Therefore, it might be assumed that the binding was mainly due to the hydrophobic interactions. Sulfaethidole seems to be a reasonable CD probe for the study of hydrophobic drug interactions.

  • PDF

Molecular Interactions of Soaked Nonionic Dye in Ionomer Films (아이오노머 필름에 흡수된 비이온계 염료의 분자간 상호작용에 관한 연구)

  • ;;;;;;Forrest A. Landis;Robert B. Moore
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.671-678
    • /
    • 2001
  • Sodium and zinc salts of poly(ethyaene-co-methacrylic acid) ionomers consist of three phases, i.e. ionic aggregates, amorphous, and crystalline phases. Dye molecules after soaked from the methanol solution are located near the amorphous phase or ionic aggregates within ionomer films. Depending on the location of the molecules in the ionomer film, they are under influence of dispersion forces (ethylene parts), polar forces (acid parts). and ionic dipole (ionic aggregates) interactions. The UV/Vis absorption peak of Nile Red under the dispersion force is found at near 500 nm, for the dye under the polar force effect 525 nm, and 550 and 610 nm for the dyes under $Na^+$ and $Zn^{2+}$ ionization effects, respectively. Since the divalent $Zn^{2+}$ ion has larger ionic dipole than the monovalent $Na^+$ ion, the larger red-shift of the absorption band due to the ionic dipole interaction is observed for $Zn^{2+}$ counter ion.

  • PDF

Impacts of C60-Ionic Liquids (ILs) Interactions and IL Alkyl Chain Length on C60 Dispersion Behavior: Insights at the Molecular Level

  • Wang, Zhuang;Tang, Lili;Wang, Degao
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2679-2683
    • /
    • 2014
  • Mechanisms underlying the impacts of interactions between carbon nanoparticles (CNPs) and ionic liquids (ILs) on the physicochemical behavior of CNPs need to be more full worked out. This manuscript describes a theoretical investigation at multiple levels on the interactions of fullerene $C_{60}$ with 21 imidazolium-based ILs of varying alkyl side chain lengths and anionic types and their impacts on $C_{60}$ dispersion behavior. Results show that ${\pi}$-cation interaction contributed to mechanism of the $C_{60}$-IL interaction more than ${\pi}$-anion interaction. The calculated interaction energy ($E_{INT}$) indicates that $C_{60}$ can form stable complex with each IL molecule. Moreover, the direction of charge transfer occurred from IL to $C_{60}$ during the $C_{60}$-IL interaction. Quantitative models were developed to evaluate the self-diffusion coefficient of $C_{60}$ ($D_{fullerene}$) in bulk ILs. Three interpretative molecular descriptors (heat of formation, $E_{INT}$, and charge) that describe the $C_{60}$-IL interactions and the alkyl side chain length were found to be determinants affecting $D_{fullerene}$.

Interaction of Conjugated Conducting Polymer with Ionic Liquids (공액 전도성 고분자와 이온성 액체 간에 상호작용 연구)

  • Kim, Joong-Il;Kim, Do-Young;Kim, In-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.337-344
    • /
    • 2014
  • In this paper, we have examined the interaction of low bandgap polymer {poly(2-heptadecyl-4-vinylthieno[3,4-d]thiazole)(PHVTT)} with ionic liquids. Further, we have studied the temperature dependent interactions between the ionic liquids [tri-butyl methyl ammonium methyl sulfate ([TBMA][$MeSO_4$]), methyl imidazolium chloride ([MIM]Cl) and butyl methyl imidazolium chloride ([BMIM]Cl)] and polymer using UV-vis spectroscopy, FT-IR spectroscopy, photoluminescence (PL) spectroscopy, as a function of temperature at 21, 28, 32, $37^{\circ}C$. These experimental results suggest that interactions of polymer with ionic liquids ([MIM]Cl, [TBMA][$MeSO_4$]) showed weak interactions by increasing temperature but [BMIM]Cl has no significant effect with increase in temperature.

Theoretical Study on Interactions between N-Butylpyridinium Nitrate and Thiophenic Compounds

  • Lu, Renqing;Liu, Dong;Wang, Shutao;Lu, Yukun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1814-1822
    • /
    • 2013
  • By using density functional theory calculations, we have performed a systemic study on the electronic structures and topological properties of interactions between N-butylpyridinium nitrate ($[BPY]^+[NO_3]^-$) and thiophene (TS), benzothiophene (BT), dibenzothiophene (DBT), naphthalene (NAP). The most stable structure of $[BPY]^+[NO_3]^-$ ion pair indicates that hydrogen bonding interactions between oxygen atoms on $[NO_3]^-$ anion and C2-H2 on pyridinium ring play a dominating role in the formation of ion pair. The occurrence of hydrogen bonding, ${\pi}{\cdots}$H-C, and ${\pi}{\cdots}{\pi}$ interactions between $[BPY]^+[NO_3]^-$ and TS, BT, DBT, NAP has been corroborated at the molecular level. But hydrogen bonding and ${\pi}{\cdots}{\pi}$ interactions between $[BPY]^+[NO_3]^-$ and NAP are weak in terms of structural properties and NBO, AIM analyses. DBT is prior to adsorption on N-butylpyridinium nitrate ionic liquid.

The Influence of Dielectric Constant on Ionic and Non-polar Interactions

  • Hwang, Kae-Jung;Nam, Ky-Youb;Kim, Jung-Sup;Cho, Kwang-Hwi;Kong, Seong-Gon;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.55-59
    • /
    • 2003
  • This work is focused on analyzing ion-pair interactions and showing the effect of solvent induced inter-atomic attractions in various dielectric environments. To estimate the stability of ion-pairs, SCI-PCM ab initio MO calculations were carried out. We show that the solvent-induced attraction or ‘cavitation' energy of the ion-pair interactions in solution that arises mainly from the stabilization of the water molecules by the generation of an electrostatic field. In fact, even the strong electrostatic interaction characteristic of ion-pair interactions in the gas phase cannot overcome the destabilization or reorganization of the water molecules around solute cavities that arise from cancellation of the electrostatic field. The solvent environment, possibly supplemented by some specific solvent molecules, may help place the solute molecule in a cavity whose surroundings are characterized by an infinite polarizable dielectric medium. This behavior suggests that hydrophobic residues at a protein surface could easily contact the side chains of other nearby residues through the solvent environment, instead of by direct intra-molecular interactions.

FT-Raman Studies on Ionic Interactions in ${\pi}$-Complexes of Poly(hexamethylenevinylene) with Silver Salts

  • Kim Jong-Hak;Min Byoung-Ryul;Won Jong-Ok;Kang Yong-Soo
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.199-204
    • /
    • 2006
  • Remarkably high and stable separation performance for olefin/paraffin mixtures was previously reported by facilitated olefin transport through ${\pi}$-complex membranes consisting of silver ions dissolved in poly(hexamethylenevinylene) (PHMV). In this study, the ${\pi}$-complex formation of $AgBF_4,\;AgClO_4\;and\;AgCF_{3}SO_3$ with PHMV and their ionic interactions were investigated. FT-Raman spectroscopy showed that the C=C stretching bands of PHMV shifted to a lower frequency upon incorporation of silver salt, but the degree of peak shift depended on the counter-anions of salt due to different complexation strengths. The symmetric stretching modes of anions indicated the presence of only free ions up to [C=C]:[Ag]=1:1, demonstrating the unusually high solubility of silver salt in PHMV. Above the solubility limit, the ion pairs and higher-order ionic aggregates started to form. The coordination number of silver ion for C=C of PHMV was in the order $AgBF_4$ > $AgClO_4$ > $AgCF_{3}SO_3$, but became similar at [C=C]:[Ag]=1:1. The different coordination number was interpreted in terms of the different transient crosslinks of silver cations in the complex, which may be related to both the interaction strength of the polymer/silver ion and the bulkiness of the counteranion.

Solvation of a Small Metal-Binding Peptide in Room-Temperature Ionic Liquids

  • Shim, Youngseon;Kim, Hyung J.;Jung, YounJoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3601-3606
    • /
    • 2012
  • Structural properties of a small hexapeptide molecule modeled after metal-binding siderochrome immersed in a room-temperature ionic liquid (RTIL) are studied via molecular dynamics simulations. We consider two different RTILs, each of which is made up of the same cationic species, 1-butyl-3-methylimidazolium ($BMI^+$), but different anions, hexafluorophosphate ($PF_6{^-}$) and chloride ($Cl^-$). We investigate how anionic properties such as hydrophobicity/hydrophilicity or hydrogen bonding capability affect the stabilization of the peptide in RTILs. To examine the effect of peptide-RTIL electrostatic interactions on solvation, we also consider a hypothetical solvent $BMI^0Cl^0$, a non-ionic counter-part of $BMI^+Cl^-$. For reference, we investigate solvation structures in common polar solvents, water and dimethylsulfoxide (DMSO). Comparison of $BMI^+Cl^-$ and $BMI^0Cl^0$ shows that electrostatic interactions of the peptide and RTIL play a significant role in the conformational fluctuation of the peptide. For example, strong electrostatic interactions between the two favor an extended conformation of the peptide by reducing its structural fluctuations. The hydrophobicity/hydrophilicity of RTIL anions also exerts a notable influence; specifically, structural fluctuations of the peptide become reduced in more hydrophilic $BMI^+Cl^-$, compared with those in more hydrophobic $BMI^+PF_6{^-}$. This is ascribed to the good hydrogen-bond accepting power of chloride anions, which enables them to bind strongly to hydroxyl groups of the peptide and to stabilize its structure. Transport properties of the peptide are examined briefly. Translations of the peptide significantly slow down in highly viscous RTILs.

Drug-Biomacromolecule Interaction VIII

  • Kim, Chong-Kook;Yang, Ji-Sun;Lim, Yun-Su
    • Archives of Pharmacal Research
    • /
    • v.7 no.2
    • /
    • pp.87-93
    • /
    • 1984
  • The effects of ionic strength and pH on the binding of cefazolin to bovine serum albumin (BSA) were studied by UV difference spectrophotometry. As ionic strength at constant pH and temperature increases, the apparent bining constant decreased but the number of binding sites remained almost constant at 2. The constancy of the number of binding sites with increasing the ionic strength suggests that purely electrostatic forces between BSA and drug do not have great importance in the drug binding, even though there is a decrease in the apparent binding constant. Thus, the effect of ionic strength on the interaction between drug and BSA may be explained by the changes in ionic atmosphere of the aggregated BSA molecules and competitive inhibition by phosphate ions. In addition, the higher apparent binding constant at high ionic strength is explained by conformational changes of BSA from its aggregate forms into subunits. The pH effects on the afinity of interactions indicated that the binding affinity of cefazoline is higher in the neutral region than in the alkaline region. An d at high pH value, the number of binding sites decreased from 2 to 1 because of the conformational change of BSA in the alkaline region.

  • PDF