DOI QR코드

DOI QR Code

Interaction of Conjugated Conducting Polymer with Ionic Liquids

공액 전도성 고분자와 이온성 액체 간에 상호작용 연구

  • Kim, Joong-Il (Department of Chemistry, Kwangwoon University) ;
  • Kim, Do-Young (Department of Electrical and Biological Physics, Kwangwoon University) ;
  • Kim, In-Tae (Department of Chemistry, Kwangwoon University)
  • Received : 2014.03.29
  • Accepted : 2014.09.02
  • Published : 2014.09.30

Abstract

In this paper, we have examined the interaction of low bandgap polymer {poly(2-heptadecyl-4-vinylthieno[3,4-d]thiazole)(PHVTT)} with ionic liquids. Further, we have studied the temperature dependent interactions between the ionic liquids [tri-butyl methyl ammonium methyl sulfate ([TBMA][$MeSO_4$]), methyl imidazolium chloride ([MIM]Cl) and butyl methyl imidazolium chloride ([BMIM]Cl)] and polymer using UV-vis spectroscopy, FT-IR spectroscopy, photoluminescence (PL) spectroscopy, as a function of temperature at 21, 28, 32, $37^{\circ}C$. These experimental results suggest that interactions of polymer with ionic liquids ([MIM]Cl, [TBMA][$MeSO_4$]) showed weak interactions by increasing temperature but [BMIM]Cl has no significant effect with increase in temperature.

이 논문은 온도차에 따라 변화되는 이온성 액체와 낮은 밴드갭을 갖는 고분자인 poly(2-heptadecyl-4-vinylthieno[3,4-d]thiazole)(PHVTT) 간의 상호작용 및 고분자의 거동을 조사하였다. 이온성 액체는 methyl imidazolium chloride([MIM]Cl), butyl methyl imidazolium chloride([BMIM]Cl), tri-butyl methyl ammonium methyl sulfate([TBMA][ $MeSO_4$])를 사용하였으며, 21, 28, 32, $37^{\circ}C$로 온도를 변화시키며 상호작용의 변화를 UV-vis spectroscopy, FT-IR spectroscopy, photoluminescence spectroscopy를 통해 확인한 결과 이온성 액체인 [MIM]Cl, [TBMA][$MeSO_4$]와 PHVTT의 상호작용은 점차 약해짐을 확인할 수 있었지만, [BMIM]Cl은 온도 변화에 따른 상호작용의 변화를 보이지 않았다.

Keywords

References

  1. Y. Liu, C. Lu, S. Twigg, M. Ghaffari, J. Lin, N. Winograd, Q. M. Zhang, Direct observation of ion distributions near electrodes in ionic polymer actuators containing ionic liquids, Sci. Rep. 3, 1-7 (2013).
  2. Y. S. Ye, J. Rick, B. J. Hwang, Ionic liquid polymer electrolytes, J. Mater. Chem. A1, 2719-2743 (2013).
  3. D. S. Rajput, K. Yamada, S. S. Sekhon. Study of ion diffusional motion in ionic liquid-based polymer electrolytes by simultaneous solid state NMR and DTA, J. Phys. Chem. B. 117, 2475-2481 (2013). https://doi.org/10.1021/jp3116512
  4. H. Cheng, C. Zhu, B. Huang, M. Lu, Y. Yang, Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids, Electrochim. Acta. 52, 5789-5794 (2007). https://doi.org/10.1016/j.electacta.2007.02.062
  5. Q. Zhao, S. Soll, M. Antonietti, J. Yuan, Organic acids can crosslink poly(ionic liquids into mesoporous polyelectrolyte complexes, Polym. Chem. 4, 2432-2435 (2013). https://doi.org/10.1039/c3py00159h
  6. T. L. Greaves, C. Drummond, Protic ionic liquids: properties and applications, J. Chem. Rev. 108, 206-237 (2008). https://doi.org/10.1021/cr068040u
  7. M. J. Park, I. Choi, J. Hong, O. Kim, Polymer electrolytes integrated with ionic liquids for future electrochemical devices, J. Appl. Polym. Sci. doi:10.1002/APP.39064 (2013).
  8. P. Attri, P. M. Reddy, P. Venkatesu, A. Kumar, T. Hofman, Measurements and molecular interactions for N,N-dimethyl formamide with ionic liquid mixed solvents, J. Phys. Chem. B. 114, 6126-6133 (2010). https://doi.org/10.1021/jp101209j
  9. B. Qiu, B. Lin, F. Yan, Ionic liquid/ poly(ionic liquid)-based electrolytes for energy devices, Polym. Int. 62, 335-337 (2013). https://doi.org/10.1002/pi.4454
  10. T. Welton, Room-temperature ionic liquids solvents for synthesis and catalysis, Chem. Rev. 99, 2071-2084 (1999). https://doi.org/10.1021/cr980032t
  11. Rogers, R. D.; Seddon, K. R. Ionic liquids-solvents of the future? Science. 302, 792-793 (2003). https://doi.org/10.1126/science.1090313
  12. Davis, J. H. Task-specific ionic liquids, Chem. Lett. 33, 1072-1077 (2004). https://doi.org/10.1246/cl.2004.1072
  13. J. Megaw, A. Busetti, B. F. Gilmore, Isolation and characterization of 1-alkyl-3-meth ylimidazolium chloride ionic liquid-tolerant and biodegrading marine bacteria, PLoS ONE. 8, e60806, doi:10.1371/journal.pone.0060806 (2013).
  14. X. D. Hou, Q. P. Liu, T. J. Smith, N. Li, M. H. Zo, Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids, PLoS ONE. 8, e59145, doi:10.1371/journal.pone.0059145 (2013).
  15. P. Attri, P. Venkatesu, A. Kumar, Activity and stability of ${\alpha}$-chymotrypsin inbiocompatible ionic liquids: enzyme refolding by triethyl ammonium acetate, Phys. Chem. Chem. Phys. 13, 2788-2796 (2011). https://doi.org/10.1039/C0CP01291B
  16. A. Martinelli, A. Matic, P. Jacobsson, L. Borjesson, M. A. Navarra, S. Panero, B. Scrosati, A structural study on ionic-liquid-based polymer electrolyte membranes, J. Electrochem. Soc. 154, G183.G187 (2007). https://doi.org/10.1149/1.2745640
  17. S. S. Sekhon, J. S. Park, E. Cho, Y. G. Yoon, C. S. Kim, W. Y. Lee, Morphology studies of high temperature proton conducting membranes containing hydrophilic/hydrophobic ionic liquids, Macromolecules. 42, 2054-2062 (2009). https://doi.org/10.1021/ma8027112
  18. M. Susan, T. Kaneko, A. Noda, M. Watanabe, Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes, J. Am. Chem. Soc. 127, 4976-4983 (2005). https://doi.org/10.1021/ja045155b
  19. Y. He, Z. Li, P. Simone, T. P. Lodge, Self-assembly of block copolymer micelles in an ionic liquid, J. Am. Chem. Soc. 128, 2745-2750 (2006). https://doi.org/10.1021/ja058091t
  20. Y. He, T. P. Lodge, The micellar shuttle: thermo reversible, intact transfer of block copolymer micelles between an ionic liquid and water, J. Am. Chem. Soc. 128, 12666-12667 (2006). https://doi.org/10.1021/ja0655587
  21. Y. Y. He, P. G. Boswell, P. Buhlmann, T. P. Lodge, Ion gels by self-assembly of a triblock copolymer in an ionic liquid, J. Phys. Chem. B 111, 4645-4652 (2007). https://doi.org/10.1021/jp064574n
  22. P. M. Simone, T. P. Lodge, Micellization of PS-PMMA diblock copolymers in anionic liquid, Macromol. Chem. Phys. 208, 339-348 (2007). https://doi.org/10.1002/macp.200600392
  23. Z. Bai, Y. He, T. P. Lodge, Block copolymer micelle shuttles with tunable transfer temperatures between ionic liquids and aqueous solutions, Langmuir 24, 5284-5290 (2008). https://doi.org/10.1021/la703848e
  24. P. M. Simone, T. P. Lodge, Lyotropicphase behavior of polybutadiene-poly(ethylene oxide) diblock copolymers in ionic liquids, Macromolecules 41, 1753-1759 (2008). https://doi.org/10.1021/ma702252v
  25. I. T. Kim, J. H. Lee, S. W. Lee, New Low Band Gap Conjugated Conducting Poly(2-nonylthieno[3,4-d]thiazole): Synthesis, Characterization, and Properties. Bull. Korean. Chem. Soc. 28, 2511-2513 (2007). https://doi.org/10.5012/bkcs.2007.28.12.2511