DOI QR코드

DOI QR Code

Theoretical Study on Interactions between N-Butylpyridinium Nitrate and Thiophenic Compounds

  • Lu, Renqing (College of Science, China University of Petroleum (East China)) ;
  • Liu, Dong (College of Chemical Engineering, China University of Petroleum (East China)) ;
  • Wang, Shutao (College of Science, China University of Petroleum (East China)) ;
  • Lu, Yukun (College of Science, China University of Petroleum (East China))
  • Received : 2013.01.14
  • Accepted : 2013.03.24
  • Published : 2013.06.20

Abstract

By using density functional theory calculations, we have performed a systemic study on the electronic structures and topological properties of interactions between N-butylpyridinium nitrate ($[BPY]^+[NO_3]^-$) and thiophene (TS), benzothiophene (BT), dibenzothiophene (DBT), naphthalene (NAP). The most stable structure of $[BPY]^+[NO_3]^-$ ion pair indicates that hydrogen bonding interactions between oxygen atoms on $[NO_3]^-$ anion and C2-H2 on pyridinium ring play a dominating role in the formation of ion pair. The occurrence of hydrogen bonding, ${\pi}{\cdots}$H-C, and ${\pi}{\cdots}{\pi}$ interactions between $[BPY]^+[NO_3]^-$ and TS, BT, DBT, NAP has been corroborated at the molecular level. But hydrogen bonding and ${\pi}{\cdots}{\pi}$ interactions between $[BPY]^+[NO_3]^-$ and NAP are weak in terms of structural properties and NBO, AIM analyses. DBT is prior to adsorption on N-butylpyridinium nitrate ionic liquid.

Keywords

References

  1. Stanislaus, A.; Marafi, A.; Rana, M. S. Catal. Today 2010, 153, 1. https://doi.org/10.1016/j.cattod.2010.05.011
  2. Kulkarni, P. S.; Afonso, C. A. M. Green Chem. 2010, 12, 1139. https://doi.org/10.1039/c002113j
  3. Bosmann, A.; Datsevich, L.; Jess, A.; Lauter, A.; Schmitz, C.; Wasseerscheid, P. Chem. Commun. 2001, 2494.
  4. Lo, W.; Yang, H.; Wei, G. Green Chem. 2003, 5, 639. https://doi.org/10.1039/b305993f
  5. Anantharaj, R.; Banerjee, T. Int. J. Chem. Eng. 2011, 2011, 1.
  6. Potdar, S.; Anantharaj, R.; Banerjee, T. J. Chem. Eng. Data 2012, 57, 1026. https://doi.org/10.1021/je200924e
  7. Kumar, A. A. P.; Banerjee, T. Fluid Phase Equilib. 2009, 278, 1. https://doi.org/10.1016/j.fluid.2008.11.019
  8. Anantharaj, R.; Banerjee, T. Fluid Phase Equilib. 2011, 312, 20. https://doi.org/10.1016/j.fluid.2011.09.006
  9. Santiago, R. S.; Santos, G. R.; Aznar, M. Fluid Phase Equilib. 2009, 278, 54. https://doi.org/10.1016/j.fluid.2009.01.002
  10. Hanke, C. G.; Johansson, A.; Harper, J. B.; Lynden-Bell, R. M. Chem. Phys. Lett. 2003, 374, 85. https://doi.org/10.1016/S0009-2614(03)00703-6
  11. Kedra-Krolik, K.; Fabrice, M.; Jaubert, J. Ind. Eng. Chem. Res. 2011, 50, 2296. https://doi.org/10.1021/ie101834m
  12. Anantharaj, R.; Banerjee, T. AIChE J. 2011, 57, 749. https://doi.org/10.1002/aic.12281
  13. Su, B.; Zhang, S.; Zhang, C. J. Phys. Chem. B 2004, 108, 19510. https://doi.org/10.1021/jp049027l
  14. Zhou, J.; Mao, J.; Zhang, S. Fuel Process. Technol. 2008, 89, 1456. https://doi.org/10.1016/j.fuproc.2008.07.006
  15. Martinez-Magadan, J.; Oviedo-Roa, R.; Garcia, P.; Martinez-Palou, R. Fuel Process. Technol. 2012, 97, 24. https://doi.org/10.1016/j.fuproc.2012.01.007
  16. Liu, X.; Zhou, G.; Zhang, X.; Zhang, S. AIChE J. 2010, 56, 2983. https://doi.org/10.1002/aic.12185
  17. Gui, J.; Liu, D.; Sun, Z.; Liu, D.; Min, D.; Song, B.; Peng, X. J. Mol. Catal. A: Chem. 2010, 331, 64. https://doi.org/10.1016/j.molcata.2010.08.003
  18. Nie, Y.; Yuan, X. J. Theor. Comput. Chem. 2011, 10, 31. https://doi.org/10.1142/S0219633611006268
  19. Wang, J.; Zhao, D.; Zhou, E.; Dong, Z. J. Fuel Chem. Technol. 2007, 35, 293. https://doi.org/10.1016/S1872-5813(07)60022-X
  20. Gao, H.; Luo, M.; Xing, J.; Wu, Y.; Li, Y.; Li, W.; Liu, Q.; Liu, H. Ind. Eng. Chem. Res. 2008, 47, 8384. https://doi.org/10.1021/ie800739w
  21. Zhao, D.; Wang, Y.; Duan, E. Molecules 2009, 14, 4351. https://doi.org/10.3390/molecules14114351
  22. Gao, H.; Li, Y.; Wu, Y.; Luo, M.; Li, Q.; Xing, J.; Liu, H. Energy Fuels 2009, 23, 2690. https://doi.org/10.1021/ef900009g
  23. Zhao, D.; Wang, Y.; Duan, E.; Zhang, J. Chem. J. Chin. Univ. 2010, 31, 488.
  24. Delley, B. J. Chem. Phys. 1990, 92, 508. https://doi.org/10.1063/1.458452
  25. Delley, B. J. Chem. Phys. 2000, 113, 7756. https://doi.org/10.1063/1.1316015
  26. Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244. https://doi.org/10.1103/PhysRevB.45.13244
  27. Castellano, O.; Gimon, R.; Soscun, H. Energy Fuels 2011, 25, 2526. https://doi.org/10.1021/ef101471t
  28. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. https://doi.org/10.1021/cr00088a005
  29. Singh, R. N.; Kumar, A.; Tiwari, R. K.; Rawat, P.; Gupta, V. P. J. Mol. Struct. 2013, 1035, 427. https://doi.org/10.1016/j.molstruc.2012.11.059
  30. Lobayan, R. M.; Jubert, A. H.; Vitale, M. G.; Pomilio, A. B. J. Mol. Model 2009, 15, 537. https://doi.org/10.1007/s00894-008-0389-6
  31. Biegler-Konig, F.; Schonbohm, J. J. Comput. Chem. 2002, 23, 1489. https://doi.org/10.1002/jcc.10085
  32. Biegler-Konig, F.; Schonbohm, J.; Bayles, D. J. Comput. Chem. 2001, 22, 545. https://doi.org/10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-Y
  33. Inada, Y.; Orita, H. J. Comput. Chem. 2008, 29, 225. https://doi.org/10.1002/jcc.20782
  34. Bondi, A. J. Phys. Chem. 1964, 68, 441. https://doi.org/10.1021/j100785a001
  35. Sinnokrot, M. O.; Valeev, E. F.; Sherrill, C. D. J. Am. Chem. Soc. 2002, 124, 10887. https://doi.org/10.1021/ja025896h
  36. Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525. https://doi.org/10.1021/ja00170a016
  37. Rashkin, M. J.; Waters, M. L. J. Am. Chem. Soc. 2002, 124, 1860. https://doi.org/10.1021/ja016508z
  38. Bader, R. W. F. Chem. Rev. 1991, 91, 893. https://doi.org/10.1021/cr00005a013
  39. Koch, U.; Popelier, P. L. A. J. Phys. Chem. 1995, 99, 9747. https://doi.org/10.1021/j100024a016
  40. Popelier, P. L. A. J. Phys. Chem. A 1998, 102, 1873. https://doi.org/10.1021/jp9805048
  41. Sainz-Diaz, C. I.; Francisco-Marquez, M.; Vivier-Bunge, A. Theor. Chem. Acc. 2010, 125, 83. https://doi.org/10.1007/s00214-009-0666-1
  42. Zhang, S.; Zhang, Z. C. Green Chem. 2002, 4, 376. https://doi.org/10.1039/b205170m
  43. Zhang, S.; Zhang, Q.; Zhang, Z. C. Ind. Eng. Chem. Res. 2004, 43, 614. https://doi.org/10.1021/ie030561+
  44. Espinosa, E.; Souhassou, M.; Lachekar, H.; Lecomte, C. Acta Cryst. 1999, B55, 563.
  45. Netzel, J.; van Smaalen, S. Act Cryst. 2009, B65, 624.

Cited by

  1. Ionic Liquid vol.119, pp.19, 2015, https://doi.org/10.1021/acs.jpcb.5b00516
  2. The selectivity for sulfur removal from oils: An insight from conceptual density functional theory vol.62, pp.6, 2013, https://doi.org/10.1002/aic.15161