• 제목/요약/키워드: ionic groups

검색결과 165건 처리시간 0.027초

Partially Hydrolyzed Crosslinked Alginate-graft-Polymethacrylamide as a Novel Biopolymer-Based Superabsorbent Hydrogel Having pH - Responsive Properties

  • Pourjavadi A.;Amini-Fazi M. S.;Hosseinzadeh H.
    • Macromolecular Research
    • /
    • 제13권1호
    • /
    • pp.45-53
    • /
    • 2005
  • In this study, a series of highly swelling hydrogels based on sodium alginate (NaAlg) and polymethacryl­amide (PMAM) was prepared through free radical polymerization. The graft copolymerization reaction was performed in a homogeneous medium and in the presence of ammonium persulfate (APS) as an initiator and N,N'-methylenebis­acrylamide (MBA) as a crosslinker. The crosslinked graft copolymer, alginate-graft-polymethacrylamide (Alg-g­PMAM), was then partially hydrolyzed by NaOH solution to yield a hydrogel, hydrolyzed alginate-graft-poly­methacrylamide (H-Alg-g-PMAM). During alkaline hydrolysis, the carboxamide groups of Alg-g-PMAM were converted into hydrophilic carboxylate anions. Either the Alg-g-PMAM or the H-Alg-g-PMAM was characterized by FTIR spectroscopy. The effects of the grafting variables (i.e., concentration of MBA, MAM, and APS) and the alkaline hydrolysis conditions (i.e., NaOH concentration, hydrolysis time, and temperature) were optimized systematically to achieve a hydrogel having the maximum swelling capacity. Measurements of the absorbency in various aqueous salt solutions indicated that the swelling capacity decreased upon increasing the ionic strength of the swelling medium. This behavior could be attributed to a charge screening effect for monovalent cations, as well as ionic cross-linking for multivalent cations. Because of the high swelling capacity in salt solutions, however, the hydrogels might be considered as anti-salt superabsorbents. The swelling behavior of the superabsorbing hydrogels was also measured in solutions having values of pH ranging from 1 to 13. Furthermore, the pH reversibility and on/off switching behavior, measured at pH 2.0 and 8.0, suggested that the synthesized hydrogels were excellent candidates for the controlled delivery of bioactive agents. Finally, we performed preliminary investigations of the swelling kinetics of the synthesized hydrogels at various particle sizes.

TEVC Studies of potent Antagonists of Human $P2X_3$ Receptor

  • Moon, Hyun-Duk;Lee, Jung-Sun;Park, Chul-Seung;Kim, Yong-Chul
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.55-55
    • /
    • 2003
  • P2X$_3$ receptor, a member of P2 purine receptors, is a ligand-gated ion channel activated by extracellular ATP as an endogenous ligand, and highly localized in peripheral and central sensory neurons. The activation of P2X3 receptor by ATP as the pronociceptive effect has been known to initiate the pain signaling involved in chronic inflammatory nociception and neuropathic pain by nerve injury, implicating the possibility of new drug development to control pains. In this study, we have developed a two electrode voltage clamp (TEVC) assay system to evaluate the inhibitory activity of several newly synthesized PPADS and a novel non-ionic antagonist against ATP activation of human P2X3 receptor. PPADS derivatives include several pyridoxine and pyridoxic acid analogs to study the effects of phosphate and aldehyde functional groups in PPADS. All new PPADS analogs were less potent than PPADS at human P2X$_3$ receptors, however, LDD130, a non-ionic analog showed potent antagonistic property with $IC_{50}$/ of 8.34 pM. In order to uncover the structure activity relationships of LDD130, and design new structural analogs, we synthesized and investigated a few structural variants of LDD130, and the results will be discussed in this presentation.

  • PDF

지시약 적정법 및 분광광도법에 의한 양이온 고분자 전해질의 전해밀도 정량 (Charge Determination of Cationic Polyelectrolytes by Visual Titrimetry and Spectrophotometry)

  • 이민규;김상규
    • 한국환경과학회지
    • /
    • 제14권6호
    • /
    • pp.525-532
    • /
    • 2005
  • Polyelectrolyte titration, which was called colloid titration is based on the stoichiometric reaction between oppositely charged polyelectrolytes, This can be used, for instance, to determine the charge density of a cationic polyelectrolyte, using an anionic polyelectrolyte of known charge density, such as potassium polyvinyl sulfate (PPVS). The technique requires a suitable method of end-point detection and there are several possibilities. In this work, two methods have been investigated: visual titrimetry based on the color change of a cationic dye (o-toluidine blue, o-Tb) and spectrophotometry based on the absorbance change corresponding to the color change of the same dye. These have been applied to several cationic polyelectrolytes with different charge density and molecular weight. In all cases, the cationic charge was due to quaternary nitrogen groups. In the case of cationic dye, it was shown that the sharpness depends on the charge density of cationic polyelectrolyte. With the polyelectrolytes of lower charge density, the binding to PPVS is weaker and binding of the dye to PPVS can occur before all of the polyelectrolyte charge has been neutralized. However, by carrying out titrations at several polyelectrolyte concentrations, good linear relationships were found, from which reliable charge density values could be derived. Effects of pH and ionic strength were also briefly investigated. For cationic polyelectrolytes (copolymers of acrylamide and dimethylaminoethy] acrylate), there was some loss of charge at higher pH values, probably as a result of hydrolysis. Increasing ionic strength causes a less distinct color change of o-Tb, as a result of weaker electrostatic interactions.

이온결합 형성에 따른 이액형 폴리우레탄 접착제의 기계적 특성 향상 (Enhancement of Mechanical Properties of 2K Polyurethane Adhesives via Forming Ionic Bonds)

  • 권하은;김두헌;김구니
    • 접착 및 계면
    • /
    • 제22권4호
    • /
    • pp.128-135
    • /
    • 2021
  • 본 연구에서는 acid group을 포함하는 acid 폴리올을 합성하였고, acid 폴리올을 함량별로 도입하여 신규 폴리우레탄 접착제를 개발하였다. Acid 폴리올 도입하였을 때 acid content가 0.1~0.3 wt%일 때 기계적 물성이 최댓값을 나타냈으며, 0.5 wt% 이상의 함량에서는 기계적 물성 및 접착 강도가 감소하는 것을 확인하였다. Acid group으로는 carboxylic acid와 sulfuric acid를 도입하여 특성을 비교하였으며, carboxylic acid가 sulfuric acid보다 강한 수소 결합력을 보이며 기계적 물성을 향상시켰다. 또한, ZnO와 CaCO3를 도입하여 입자의 크기와 물성의 상관관계를 확인하였다. ZnO와 CaCO3를 도입한 경우 acid group과 이온결합이 형성되어 기계적 물성이 증가하는 것을 확인하였다.

박테리아 부착억제 고분자 기반 고체 표면의 항균 코팅 연구 동향 (Recent Progress of Antibacterial Coatings on Solid Substrates Through Antifouling Polymers)

  • 고상원;이재영;박덕신
    • 공업화학
    • /
    • 제32권4호
    • /
    • pp.371-378
    • /
    • 2021
  • 고체 표면의 박테리아 부착억제를 목적으로 고분자를 이용한 친수성 표면 개질 연구가 주목을 받고 있다. 부착억제기능은 세포독성이 아닌 작용으로 바이오필름 형성의 초기단계 방지를 목적으로 하며 친수성 또는 이온성 고분자가 도입된 고체 표면은 단백질, 박테리아 등 생물 개체의 부착방지에 효과적이다. 이는 표면에서의 친수층 형성으로 인한 표면 장벽 형성, 고분자 사슬에 의한 반발력과 삼투압성 응력 작용, 그리고 이온성 고분자와 세포 표면의 정전기적 상호작용에 기인한다. 부착억제를 위한 고분자의 표면 도입은 주로 표면 기능기와의 결합을 이용한 접합 방식과 자연모방 접착 기능기를 활용한 침적 방식으로 이루어지고 있다. 본 총설에서는 표면 도입 시 부착억제 기능을 보이는 대표적인 고분자의 종류, 코팅방법, 및 항균 특성을 소개하고 향후 공공시설, 산업 등으로의 대면적 응용을 위한 고려사항들을 다루고자 한다.

Lipase Treatment of Polyester Fabrics

  • Kim, Hye-Rim;Song, Wha-Soon
    • Fibers and Polymers
    • /
    • 제7권4호
    • /
    • pp.339-343
    • /
    • 2006
  • The aim of this paper is to improve moisture regain of PET fabrics using a lipase treatment. Effects of nine lipase sources, lipase activator and nonionic surfactant on moisture regain of PET fabrics are examined. Moisture regains of lipase-treated samples improve by two times in average compared with untreated and buffer-treated samples. Alkaline treatment creates larger pitting by more aggressive attack into fiber which is proved by SEM and water contact angle measurement. Moisture regain by alkaline treatment ($0.568%{\pm}0.08$) does not improve. However, lipase-treatment (L2 treatment) improves moisture regain up to 2.4 times ($1.272%{\pm}0.05$). Although lipase treatment is more moderate than alkaline treatment, lipase hydrolysis on PET fabrics improves moisture regain, efficiently. K/S values improved confirm that carboxyl and hydroxyl groups are produced on the surface of PET fabrics by lipase hydrolysis. Moisture regain and dyeability improve by lipase hydrolysis on PET fabrics.

광그라프트로 양이온화된 PET 직물의 산성 염료에 대한 염색성 (Dyeability of Cationized PET Fabrics to Acid Dyes via Photografting)

  • 손정아;장진호
    • 한국염색가공학회지
    • /
    • 제20권2호
    • /
    • pp.38-46
    • /
    • 2008
  • PET fabrics were cationized via photografting under continuous UV irradiation with a cationic monomer. The grafted PET was dyed with three acid dyes. Effect of dye concentration, dyeing time, temperature and pH on acidic dyeing of the cationized PET fabrics was assessed to find optimal dyeing condition. The cationized fabrics was successfully dyed at $75^{\circ}C$ under pH 5.5. However the dyeing sites of the grafted fabrics were nearly occupied above 5%owf dye concentration and the rapid exhaustion of the anionic dyes was observed. The dyeability of the cationized PET fabrics was increased proportionally with increasing percent grafting because of the introduction of ionic attraction between quaternary ammonium groups and acid dyes. Lower dyeability both at alkaline and pH 3 condition attributed to negative zeta potentials of the grafted fabrics and the reduced charge of the acid dyes respectively.

Polymers with Phosphodiester Bonds: from Models of Biopolymers to Liquid Membranes and Polymer-Inorganic Hybrids

  • Penczek, Stanislaw
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.89-89
    • /
    • 2006
  • Polyalkylene phosphates - polymers that are built on the repeating unit of the diester of phosphoric acid: -[OP(O)(OH)Oalkylene]-, are known to form backbones of nucleic and teichoic acids. Various synthetic ways will be reported for the synthesis of the bare chains, where "alkylene" in the formula above means mostly two or three methylene groups. Some other structures have also been prepared. Several applications of these polymers are to be discussed, namely as liquid membranes, as components of two-block copolymers (ionic-nonionic diblock dihydrophilic) used as modifiers of CaCO3 crystallization, and as components of the inorganic-polymer hybrid materials. Some other applications in the biomedical field will also be discussed.

  • PDF

Fabrication of nanoaggregates of triple hydrophilic block copolymers by binding of ionic surfactants

  • Khanal, Anil;Yusa, Shin-Ichi;Nakashima, Kenichi
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.302-302
    • /
    • 2006
  • Nanoaggregates of triple hydrophilic block copolymers comprised of poly(ethylene oxide), poly(sodium 2-acrylamido)-2-methylpropanesulfonate), and poly(methacrylic acid) (PEO-PAMPS-PMAA) and the cationic surfactant, dodecyltrimethylammonium chloride (DTAC) have been fabricated. The formation of $^{\circ}^{\circ}$the nanoaggregates is based on electrostatic interaction of sulfonate and carboxylate groups of PAMPS and PMAA blocks with the cationic surfactant, which results in insolubilization of these blocks. The formation of micelle is observed by dynamic light scattering measurements. Binding of DTAC to the anionic blocks of PEO-PAMPS-PMAA is confirmed by electrophoresis measurements.

  • PDF

In-Situ Cross-linked Polymer Electrolyte Membranes from Thermally Reactive Oligomers for Direct Methanol Fuel Cells

  • Kim, Hae-Kyoung;Lee, Won-Mok;Park, Sam-Dae;Chang, Yoon-Ju;Jung, Jin-Chul;Chang, H.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.271-271
    • /
    • 2006
  • The present article describes a novel method of preparing the sulfonated polysulfone-based PEMs for DMFC, which are excellent in film quality, proton conductivity, methanol impermeability and mechanical properties. No depression in film quality or difficulty in film preparation is observed, even though sulfonated group of the PEMs are kept as high as 70 mol %. Allyl-terminated cooligo-PESs containing the organic sulfonate groups were solvent-cast into films and then thermally treated for cross-linking. Cross-linked sulfonated polysulfone-based PEMs gave unprecedented reduction of methanol cross-over and high ionic conductivity through in-situ thermal polymerization and cross-linking of telechelic sulfonated sulfone oligomers during a membrane preparation.

  • PDF