DOI QR코드

DOI QR Code

Enhancement of Mechanical Properties of 2K Polyurethane Adhesives via Forming Ionic Bonds

이온결합 형성에 따른 이액형 폴리우레탄 접착제의 기계적 특성 향상

  • Kwon, Haeun (Korea Institute of Footwear & Leather Technology) ;
  • Kim, Doo Hun (Korea Institute of Footwear & Leather Technology) ;
  • Kim, Gu Ni (Korea Institute of Footwear & Leather Technology)
  • 권하은 (한국신발피혁연구원 하이브리드소재연구실) ;
  • 김두헌 (한국신발피혁연구원 하이브리드소재연구실) ;
  • 김구니 (한국신발피혁연구원 하이브리드소재연구실)
  • Received : 2021.10.21
  • Accepted : 2021.12.14
  • Published : 2021.12.31

Abstract

In this study, the acid polyols containing acid groups were synthesized, the novel polyurethane adhesive was developed by introducing the acid polyol by content. The acid polyols were introduced, the mechanical properties showed the maximum value when the acid content was 0.1 to 0.3 wt%, and it was confirmed that the mechanical properties and adhesive strength decreased at the content higher than 0.5 wt%. As the acid group, carboxylic acid and sulfuric acid were introduced to compare properties, and carboxylic acid showed stronger hydrogen bonding potential than sulfuric acid and improved mechanical properties. In addition, the correlation between particle size and mechanical properties was confirmed by introducing ZnO and CaCO3. When ZnO and CaCO3 were introduced, an ionic bond was formed with an acid group, and it was confirmed that mechanical properties were increased.

본 연구에서는 acid group을 포함하는 acid 폴리올을 합성하였고, acid 폴리올을 함량별로 도입하여 신규 폴리우레탄 접착제를 개발하였다. Acid 폴리올 도입하였을 때 acid content가 0.1~0.3 wt%일 때 기계적 물성이 최댓값을 나타냈으며, 0.5 wt% 이상의 함량에서는 기계적 물성 및 접착 강도가 감소하는 것을 확인하였다. Acid group으로는 carboxylic acid와 sulfuric acid를 도입하여 특성을 비교하였으며, carboxylic acid가 sulfuric acid보다 강한 수소 결합력을 보이며 기계적 물성을 향상시켰다. 또한, ZnO와 CaCO3를 도입하여 입자의 크기와 물성의 상관관계를 확인하였다. ZnO와 CaCO3를 도입한 경우 acid group과 이온결합이 형성되어 기계적 물성이 증가하는 것을 확인하였다.

Keywords

Acknowledgement

본 연구는 산업기술혁신사업 (과제번호 20011124)의 지원을 받아 수행되었으며 이에 감사드립니다.

References

  1. C. Hepburn, Polyurethane Elastomer, Elsevier, New York (1991).
  2. K. C. Frrish and S. L. Reegen, Advances in Urethane Science and Technology, 1, Technomic USA (1978).
  3. R. Bonart, Polymer, 20, 1389 (1979). https://doi.org/10.1016/0032-3861(79)90280-5
  4. M. J. Han, K. B. Choi, S. H. Kim, and S. H Lee, Polymer (Korea), 7 (1983).
  5. G. Woods, The ICI Polyurethane Book, ICI Polyurethanes (1987).
  6. G. Oertel, Polyurethane Handbook, Carl Hanser Verlag, Munich (1985).
  7. M. J. Jeong, J. M. Cheon, J. H. Chun, D. Y. Mok, and H. M. Lee, J. Adhesion and Interface, 10, 4 (2009).
  8. H.R. Fischer, L.H. Gielgens, and T.P.M. Koster, Acta. Polym., 50, 122 (1999). https://doi.org/10.1002/(SICI)1521-4044(19990401)50:4<122::AID-APOL122>3.0.CO;2-X
  9. K.A. Carrado and L.Xu, Chem. Mater., 10, 1440 (1998). https://doi.org/10.1021/cm970814n
  10. S. H. Son, I. H. Kim, H. J. Lee and J. H. Kim, Polymer(korea), 21, 375 (1997).
  11. D. G. Hundiwale, U. R. Kapadi and M. V. Pandya, J. Appl. Polym. Sci., 55, 1329 (1995). https://doi.org/10.1002/app.1995.070550906
  12. M. Alexander and P. Dubois, Mater Sci Eng Rev, 28, 1 (2000). https://doi.org/10.1016/S0927-796X(00)00012-7
  13. A. C. Balazs, Curr. Opin. Colloid Interface Sci., 4, 443 (2000). https://doi.org/10.1016/S1359-0294(00)00021-2
  14. E. P. Giannelis, Appl Organomet Chem, 12, 675 (1998). https://doi.org/10.1002/(SICI)1099-0739(199810/11)12:10/11<675::AID-AOC779>3.0.CO;2-V
  15. PP. Soo, B. Y. Huang, Y. M. Chiang, D. R. Sadoway and A. M. Mayers, J. Electrochem. Soc., 146, 32 (1999). https://doi.org/10.1149/1.1391560
  16. Y. Kojima, A. Usuki, M. Kawasumi, O.Okada, Y. Fukushima and T. Kurachi, J Mater. Res., 8, 1185 (1993). https://doi.org/10.1557/JMR.1993.1185
  17. R. P. Sijibesma and E. W. Meiger, Chem. Commun., 5 (2003).
  18. D. Y. Mok. H. D. Shin, D. H. Kim, G. N. Kim, H. S. Moon and I. S. Kim, Adhesion and Interface, 14, 2013
  19. H. Ebadi-Dehaghani, M.Reiszadeh, A. Chavoshi, M. Nazempour, and M. H. Vakili, Macromolecular Science, 37 (2013).
  20. D. Y. Mok, H. D. Shin, D. H. Kim, G. N. Kim, and I. S. Kim, Adhesion and Interface, 48, 256 (2013).
  21. K. Y. Chen, J. F. Kuo, C. Y. Chen, Biomaterials, 21, 161 (2000). https://doi.org/10.1016/S0142-9612(99)00144-1