• 제목/요약/키워드: ion profile

검색결과 350건 처리시간 0.025초

Dynamic Profile of the Copper Chaperone CopP from Helicobacter Pylori Depending on the Bound Metals

  • Hyun, Ja-shil;Park, Sung Jean
    • 한국자기공명학회논문지
    • /
    • 제20권3호
    • /
    • pp.76-81
    • /
    • 2016
  • Copper is an elemental ion in living organisms. CopP from Helicobacter Pylori (HpCopP) is a copper(I)-binding protein and was suggested as regulator of copper metabolism in vivo. Previously, the metal binding property of HpCopP for Ag(I), Cu(I), and Cu(II) as well as the tertiary structure of HpCopP was shown. In this study, the dynamic profiles of HpCopP depending on metal binding were studied using ${^1H}-^{15}N$ steady-state NOE analysis. The heteroNOE experiment was performed for apo-CopP or metal-bound CopP. The obtained NOE values were analyzed and compared to figure out the effect of metals on the structural flexibility of HpCopP. As a result, Ag(I) and Cu(I) ions improved the rigidity of the structure while Cu(II) ion increased the flexibility of the structure, suggesting the oxidation of the CXXC motif decreases the structural stability of HpCopP.

PECVD로 증착된 금속층을 포함하는 DLC 박막의 기계적 특성 분석 (An analysis of tribological properties of the metal interlayered DLC films prepared by PECVD method)

  • 전영숙;최원석;박용섭;홍병유
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.951-954
    • /
    • 2004
  • 본 논문에서는 DLC(Diamond-like Carbon) 박막과 기판 사이에 금속층을 포함하는 DLC 박막의 기계적 특성을 분석하였다. 금속층은 sputtering법을 사용하고, DLC 박막은 PECVD법을 사용하여 각각 중착하였다. 티타늄(Ti), 니켄(Ni), 크롬(Cr)을 각 중간 금속층으로 사용한 후 DLC 박막과 실리콘(Si) 기판 간의 기계적 특성을 분석하였다. 각 막의 두께는 FE-SEM으로 확인하였고, DLC 박막의 구조 평가는 Raman spectrometer를 사용하여 분석하였으며, 각 금속층과 DLC 박막의 표면 상태는 AFM을 이용하여 확인하였다. XRD 분석을 통하여 박막의 격자분석을 하였고, SIMS(secondary ion mass spectrometry) 분석을 통하여 DLC 박막의 depth Profile을 확인하였다.

  • PDF

Mechanism of the Hydrolysis of 2-Phenyl-4H,5H,6H-3-methyl-3-thiazinium Perchlorate Derivatives

  • 김태린;이소영;변상용;김주창;한만소
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권10호
    • /
    • pp.1213-1217
    • /
    • 1999
  • Hydrolysis reactions of 2-phenyl-4H,5H,6H-3-methyl-3-thiazinium perchlorate (PTP) and its derivatives at various pH have been investigated kinetically. The hydrolysis is quantitative, producing N-3-mercaptopropyl-N-methylbenzamide as the only product in the all pH ranges. The observed rate of hydrolysis of PTP was always of the first-order. For hydrolysis from PTP, Hammett ρvalues were 0.53, 0.84 and 1.13 for pH 5.0, 8.0, and 10.0, respectively. Bronsted βvalue was 0.53 for general base catalysis. This reaction is catalyzed by general w acetate concentration. However, as the amount of base becomes larger, the rate of hydrolysis reaction approaches the limiting values. The plot of log k vs. pH shows that the rate constants (kt) are two different regions in the profile; one part is directly proportional to hydroxide ion concentration and the other is not. On the bases of these result, the plausible hydrolysis mechanism and a reaction equation were proposed: Below pH 4.5, the hydrolysis was initiated by the addition of water to α-carbon. Above pH 9.0, the hydrolysis was proceeded by the addition of hydroxide ion to α-carbon. However, in the range of pH 4.5-8.0, these two reactions occured competitively.

LRCN을 이용한 리튬 이온 배터리의 건강 상태 추정 (State of Health Estimation for Lithium-Ion Batteries Using Long-term Recurrent Convolutional Network)

  • 홍선리;강모세;정학근;백종복;김종훈
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.183-191
    • /
    • 2021
  • A battery management system (BMS) provides some functions for ensuring safety and reliability that includes algorithms estimating battery states. Given the changes caused by various operating conditions, the state-of-health (SOH), which represents a figure of merit of the battery's ability to store and deliver energy, becomes challenging to estimate. Machine learning methods can be applied to perform accurate SOH estimation. In this study, we propose a Long-Term Recurrent Convolutional Network (LRCN) that combines the Convolutional Neural Network (CNN) and Long Short-term Memory (LSTM) to extract aging characteristics and learn temporal mechanisms. The dataset collected by the battery aging experiments of NASA PCoE is used to train models. The input dataset used part of the charging profile. The accuracy of the proposed model is compared with the CNN and LSTM models using the k-fold cross-validation technique. The proposed model achieves a low RMSE of 2.21%, which shows higher accuracy than others in SOH estimation.

MODIFICATION OF INITIALLY GROWN BN LAYERS BY POST-N$^{+}$ IMPLANTATION

  • Byon, E-S.;Lee, S-H.;Lee, S-R.;Lee, K-H.;Tian, J.;Youn, J-H.;Sung, C.
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.351-355
    • /
    • 1999
  • BN films with a high content of cubic phase has been deposited by a variety of techniques. It is well known that c-BN films grow with a unique microstructure consisting of $sp^2$ and $sp^{3-}$ bonded layers. Because of existence of the initially grown $sp^{2-}$ /bonded layer, BN films are not adhesive to the substrates. In this study, post-N$^{+ }$ / implantation was applied to improve the adhesion of the films. A Monte Carlo program TAMIX was used to simulate this modification process. The simulation showed nitrogen concentration profile at $1200\AA$ in depth in case of 50keV -implantation energy. FTIR spectra of the $N^{+}$ implanted specimens demonstrated a strong change of absorption band at 1380 cm$^{ -1 }$The films were also investigated by HRTEM. From these results, it is concluded that the post ion implantation could be an effective technique which improves the adhesion between BN film and substrate.

  • PDF

새로운 대기압 플라즈마 소스를 이용한 결정질 실리콘 태양전지 인산 도핑 가능성에 관한 연구 (A Study on Feasibility of the Phosphoric Acid Doping for Solar Cell Using Newly Atmospheric Pressure Plasma Source)

  • 조이현;윤명수;조태훈;권기청
    • 조명전기설비학회논문지
    • /
    • 제27권6호
    • /
    • pp.95-99
    • /
    • 2013
  • Furnace is currently the most important doping process using POCl3 in solar cell. However furnace need an expensive equipment cost and it has to purge a poisonous gas. Moreover, furnace typically difficult appling for selective emitters. In this study, we developed a new atmospheric pressure plasma source, in this procedure, we research the atmospheric pressure plasma doping that dopant is phosphoric acid($H_3PO_4$). Metal tube injected Ar gas was inputted 5 kV of a low frequency(scores of kHz) induced inverter, so plasma discharged at metal tube. We used the P type silicon wafer of solar cell. We regulated phosphoric acid($H_3PO_4$) concentration on 10% and plasma treatment time is 90 s, 150 s, we experiment that plasma current is 70 mA. We check the doping depth that 287 nm at 90 s and 621 nm at 150 s. We analysis and measurement the doping profile by using SIMS(Secondary Ion Mass Spectroscopy). We calculate and grasp the sheet resistance using conventional sheet resistance formula, so there are 240 Ohm/sq at 90 s and 212 Ohm/sq at 150 s. We analysis oxygen and nitrogen profile of concentration compared with furnace to check the doped defect of atmosphere.

X-선 회절 패턴 측정과 투과 전자 현미경을 이용한 구리 나노분말의 수소 환원 처리 시 발생하는 미세조직 변화 및 치밀화 시편의 물성 분석 (Analysis of the Change in Microstructures of Nano Copper Powders During the Hydrogen Reduction using X-ray Diffraction Patterns and Transmission Electron Microscope, and the Mechanical Property of Compacted Powders)

  • 안동현;이동준;김우열;박이주;김형섭
    • 한국분말재료학회지
    • /
    • 제21권3호
    • /
    • pp.207-214
    • /
    • 2014
  • In this study, nano-scale copper powders were reduction treated in a hydrogen atmosphere at the relatively high temperature of $350^{\circ}C$ in order to eliminate surface oxide layers, which are the main obstacles for fabricating a nano/ultrafine grained bulk parts from the nano-scale powders. The changes in composition and microstructure before and after the hydrogen reduction treatment were evaluated by analyzing X-ray diffraction (XRD) line profile patterns using the convolutional multiple whole profile (CMWP) procedure. In order to confirm the result from the XRD line profile analysis, transmitted electron microscope observations were performed on the specimen of the hydrogen reduction treated powders fabricated using a focused ion beam process. A quasi-statically compacted specimen from the nano-scale powders was produced and Vickers micro-hardness was measured to verify the potential of the powders as the basis for a bulk nano/ultrafine grained material. Although the bonding between particles and the growth in size of the particles occurred, crystallites retained their nano-scale size evaluated using the XRD results. The hardness results demonstrate the usefulness of the powders for a nano/ultrafine grained material, once a good consolidation of powders is achieved.

이온선택성 미소전극을 이용한 암모니아성 질소 및 질산성 질소의 연속 농도 측정 (Continuous Measurement of Ammonium-nitrogen and Nitrate-nitrogen using a Ion-Selective Microelectrode)

  • 임미지;선지윤;박정진;변임규;박태주;이태호
    • 한국물환경학회지
    • /
    • 제24권6호
    • /
    • pp.718-724
    • /
    • 2008
  • The ion selective microelectrode (ISME) has been used for measuring the ion profile of DO, $NH_4{^+}-N$, $NO_2{^-}-N$ and $NO_3{^-}-N$ in biofilm. In this study we evaluated the detection limit and validity of ISME and applied ISME for the continuous measurement of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentration in the modified Ludzack-Ettinger (MLE) process. Average detection limits of $NH_4{^+}-N$ and $NO_3{^-}-N$ ISME were $10^{-4.44}M$ and $10^{-4.62}M$, respectively. Since the ISME with $5{\sim}10{\mu}m$ of tip diameter showed a faster response time than that of $1{\sim}5{\mu}m$, the ISME with a tip diameter of $5{\sim}10{\mu}m$ was fabricated and used to make real-time ion detections. Direct monitoring of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentrations in the aerobic (2) tank causes the instability of the electromotive force (EMF) for the initial 5~8 hours and also causes remarkable error values of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentration. This phenomenon is caused by aeration and mixing in the reactor. Thus, the measuring chamber was newly designed for the aerobic (2) tank and then the EMF of the ISME were stabilized in less than 1 hour. Errors of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentration were decreased after stabilization of the EMF. The ISME analysis were well corresponded to the results of auto analyzer and ion chromatography. Consequently, the concentration of $NH_4{^+}-N$ and $NO_3{^-}-N$ could be continuously measured for 178 hours by the ISME.

Potential of Mean Force Calculations for Ion Selectivity in a Cyclic Peptide Nanotube

  • Choi, Kyu-Min;Kwon, Chan-Ho;Kim, Hong-Lae;Hwang, Hyon-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.911-916
    • /
    • 2012
  • Ion selectivity in a simple cyclic peptide nanotube, composed of four cyclo[-(D-Ala-Glu-D-Ala-Gln)$_2-$] units, is investigated by calculating the PMF profiles of $Na^+$, $K^+$, and $Cl^-$ ions permeating through the peptide nanotube in water. The final PMF profiles of the ions obtained from the umbrella sampling (US) method show an excellent agreement with those from the thermodynamic integration (TI) method. The PMF profiles of $Na^+$ and $K^+$ display free energy wells while the PMF curve of $Cl^-$ features free energy barriers, indicating the selectivity of the cyclic peptide nanotube to cations. Decomposition of the total mean force into the contribution from each component in the system is also accomplished by using the TI method. The mean force decomposition profiles of $Na^+$ and $K^+$ demonstrate that the dehydration free energy barriers by water molecules near the channel entrance and inside the channel are completely compensated for by attractive electrostatic interactions between the cations and carbonyl oxygens in the nanotube. In the case of $Cl^-$, the dehydration free energy barriers are not eliminated by an interaction between the anion and the peptide nanotube, leading to the high free energy barriers in the PMF profile. Calculations of the coordination numbers of the ions with oxygen atoms pertaining to either water molecules or carbonyl groups in the peptide nanotube reveal that the stabilization of the cations in the midplane regions of the nanotube arises from the favorable interaction of the cations with the negatively charged carbonyl oxygens.

건식 식각 공정 시뮬레이션을 위한 효율적인 그림자 테스트 알고리즘과 토포그래피 진화에 대한 연구 (Efficient Shadow-Test Algorithm for the Simulation of Dry Etching and Topographical Evolution)

  • 권오섭;반용찬;원태영
    • 전자공학회논문지D
    • /
    • 제36D2호
    • /
    • pp.41-47
    • /
    • 1999
  • 본 논문에서는 플라즈마 건식 식각 공정을 모의 실험하기 위하여 셀 제거 방법을 적용하여 개발한 시뮬레이터의 성능을 보고한다. 마스크의 기하학적 형상에 의한 그림자 효과(shadow effect)를 고려하기 위한 알고리즘과, 오차의 누적을 막기 위한 알고리즘을 새로이 적용하였다. 입사하는 이온의 분포를 계산하기 위해서 해석적 모델과 몬테 카를로 방법을 모두 적용하였다. 또한 사용자가 유닉스(UNIX) 환경에서 공정 조건을 편리하게 입력할 수 있도록 그래픽 사용자 환경(graphic user interface, GUI)을 개발하였다. 개발된 3D-SURFILER(SURface proFILER)의 성능을 검증하기 위한 콘택 홀(contact hol) 구조의 시뮬레이션에서 셀의 수를 36,000($30{\times}40{\times}30$)으로 설정하여 시뮬레이션하였을 때 SUN ULTRA 1 시스템에서 약 10Mbyte의 메모리가 사용되었으며, 시뮬레이션 시간을 20분이었다. 종횡비(aspect ratio)가 1.57인 콘택 홀 구조에서 반응성 이온 식각(reactive ion etching, RIE)을 시뮬레이션하였으며, 이온의 증속 식각의 정도를 나타내는 손상 계수의 변화와 압력이 600mTorr일 때의 이온의 입사 분포에 의한 토포그래픽(topography) 진화를 시뮬레이션하였다.

  • PDF