References
- Voet, D.; Voet, J. G. Biochemistry, 3rd ed.; John Wiley & Sons, Inc.: 2004; Vol. 1.
- MacKinnon, R. Angew. Chem. Int. Ed. 2004, 43, 4265. https://doi.org/10.1002/anie.200400662
- Hille, B. Ionic Channels of Excitable Membranes, 3rd ed.; Sinauer Associates, Inc.: Sunderland, Massachusettes, 2001.
- Roux, B. J. Phys. Chem. 1991, 95, 4856 https://doi.org/10.1021/j100165a049
- Allen, T. W.; Andersen, O. S.; Roux, B. Proc. Natl. Acad. Sci. USA 2004, 101, 117. https://doi.org/10.1073/pnas.2635314100
- Zhang, D.; Gullingsrud, J.; McCammon, J. A. J. Am. Chem. Soc. 2006, 128, 3019 https://doi.org/10.1021/ja057292u
- Lee, J.; Im, W. Phys. Rev. Lett. 2008, 100, 018103. https://doi.org/10.1103/PhysRevLett.100.018103
- Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.; Khazanovich, N. Nature 1993, 366, 324. https://doi.org/10.1038/366324a0
- Ghadiri, M. R.; Granja, J. R.; Buehler, L. K. Nature 1994, 369, 301. https://doi.org/10.1038/369301a0
- Ghadiri, M. R.; Kobayashi, K.; Granja, J. R.; Chadha, R. K.; McRee, D. E. Angew. Chem. Int. Ed. Engl. 1995, 34, 93. https://doi.org/10.1002/anie.199500931
- Motesharei, K.; Ghadiri, M. R. J. Am. Chem. Soc. 1997, 119, 11306 https://doi.org/10.1021/ja9727171
- Kim, H. S.; Hartgerink, J. D.; Ghadiri, M. R. J. Am. Chem. Soc. 1998, 120, 4417 https://doi.org/10.1021/ja9735315
- Fernadez-Lopez, S.; Kim, H. S.; Choi, E. C.; Delgado, M.; Granja, J. R.; Khasanov, A.; Kraehenbuehl, K.; Long, G.; Weinberger, D. A.; Wilcoxen, K. M.; Ghadiri, M. R. Nature 2001, 412, 452. https://doi.org/10.1038/35086601
- Sánchez-Quesada, J.; Ghadiri, M. R.; Bayley, H.; Braha, O. J. Am. Chem. Soc. 2000, 122, 11757.
- Engels, M.; Bashford, D.; Ghadiri, M. R. J. Am. Chem. Soc. 1995, 117, 9151 https://doi.org/10.1021/ja00141a005
- Asthagiri, D.; Bashford, D. Biophys. J. 2002, 82, 1176 https://doi.org/10.1016/S0006-3495(02)75475-1
- Tarek, M.; Maigret, B.; Chipot, C. Biophys. J. 2003, 85, 2287. https://doi.org/10.1016/S0006-3495(03)74653-0
- Khurana, E.; Nielsen, S. O.; Ensing, B.; Klein, M. L. J. Phys. Chem. 2006, page ASAP.
- Hwang, H.; Schatz, G. C.; Ratner, M. A. J. Phys. Chem. B 2006, 110, 26448. https://doi.org/10.1021/jp0657888
- Dehez, F.; Tarek, M.; Chipot, C. J. Phys. Chem. B 2007, 111, 10633. https://doi.org/10.1021/jp075308s
- MacKerell, A. D., Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. L., Jr.; Evanseck, J.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; III, W. E. R.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B 1998, 102, 3586. https://doi.org/10.1021/jp973084f
- Jorgensen, W. L.; Tirado-Rives, J. J. Am. Chem. Soc. 1988, 110, 1657. https://doi.org/10.1021/ja00214a001
- Beglov, D.; Roux, B. J. Chem. Phys. 1994, 100, 9050. https://doi.org/10.1063/1.466711
- Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comp. Chem. 2005, 26, 1781. https://doi.org/10.1002/jcc.20289
- Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996, 14, 33. https://doi.org/10.1016/0263-7855(96)00018-5
- Roux, B. Comp. Phys. Comm. 1995, 91, 275. https://doi.org/10.1016/0010-4655(95)00053-I
- In Free Energy Calculations; Chipot, C., Pohorille, A., Eds.; Springer: Berlin, 2007.
- Tuckerman, M. E. Statistical Mechanics: Theory and Molecular Simulation; Oxford University Press: Oxford, 2010.
- Roux, B.; Karplus, M. Biophys. J. 1991, 59, 961 https://doi.org/10.1016/S0006-3495(91)82311-6
- Grossfield, A. version 2.0.4, http://membrane.urmc.rochester.edu/content/wham 2010.
- Leung, K.; Rempe, S. B.; Lorenz, C. D. Phys. Rev. Lett. 2006, 96, 095504. https://doi.org/10.1103/PhysRevLett.96.095504
- Chang, R.; Violi, A. J. Phys. Chem. B 2006, 110, 5073. https://doi.org/10.1021/jp0565148
- Song, C.; Corry, B. J. Phys. Chem. B 2009, 113, 7642. https://doi.org/10.1021/jp810102u
- Sanchez-Quesada, J.; Isler, M. P.; Ghadiri, M. R. J. Am. Chem. Soc. 2002, 124, 10004. https://doi.org/10.1021/ja025983+
Cited by
- Exploring the Dynamic Behaviors and Transport Properties of Gas Molecules in a Transmembrane Cyclic Peptide Nanotube vol.117, pp.48, 2013, https://doi.org/10.1021/jp408769u
- Molecular dynamics study of Na+ transportation in a cyclic peptide nanotube and its influences on water behaviors in the tube vol.19, pp.10, 2013, https://doi.org/10.1007/s00894-013-1899-4
- in a Water-Filled Transmembrane Cyclic Peptide Nanotube vol.55, pp.5, 2015, https://doi.org/10.1021/acs.jcim.5b00025
- through a Cyclic Peptide Nanotube in Water and in Lipid Bilayers vol.120, pp.46, 2016, https://doi.org/10.1021/acs.jpcb.6b09638
- through a modified cyclic peptide nanotube promote energy landscape roughness vol.18, pp.46, 2016, https://doi.org/10.1039/C6CP06585F
- Transport properties of simple organic molecules in a transmembrane cyclic peptide nanotube vol.22, pp.5, 2016, https://doi.org/10.1007/s00894-016-2965-5
- Energetic and Frictional Effects in the Transport of Ions in a Cyclic Peptide Nanotube vol.38, pp.1, 2016, https://doi.org/10.1002/bkcs.11035
- Comparative study of stability and transport of molecules through cyclic peptide nanotube and aquaporin: a molecular dynamics simulation approach pp.1538-0254, 2019, https://doi.org/10.1080/07391102.2019.1570341
- Conformational Effects in the Transport of Glucose through a Cyclic Peptide Nanotube: A Molecular Dynamics Simulation Study vol.122, pp.34, 2012, https://doi.org/10.1021/acs.jpcb.8b05591
- Molecular Dynamics Simulations of Micelle Properties and Behaviors of Sodium Lauryl Ether Sulfate Penetrating Ceramide and Phospholipid Bilayers vol.124, pp.28, 2012, https://doi.org/10.1021/acs.jpcb.0c02856
- Study on the Assembly Mechanisms and Transport Properties of Transmembrane End-Charged Cyclic Peptide Nanotubes vol.61, pp.6, 2012, https://doi.org/10.1021/acs.jcim.1c00194