DOI QR코드

DOI QR Code

Potential of Mean Force Calculations for Ion Selectivity in a Cyclic Peptide Nanotube

  • Choi, Kyu-Min (Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Kwon, Chan-Ho (Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Kim, Hong-Lae (Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Hwang, Hyon-Seok (Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University)
  • Received : 2011.12.07
  • Accepted : 2012.01.05
  • Published : 2012.03.20

Abstract

Ion selectivity in a simple cyclic peptide nanotube, composed of four cyclo[-(D-Ala-Glu-D-Ala-Gln)$_2-$] units, is investigated by calculating the PMF profiles of $Na^+$, $K^+$, and $Cl^-$ ions permeating through the peptide nanotube in water. The final PMF profiles of the ions obtained from the umbrella sampling (US) method show an excellent agreement with those from the thermodynamic integration (TI) method. The PMF profiles of $Na^+$ and $K^+$ display free energy wells while the PMF curve of $Cl^-$ features free energy barriers, indicating the selectivity of the cyclic peptide nanotube to cations. Decomposition of the total mean force into the contribution from each component in the system is also accomplished by using the TI method. The mean force decomposition profiles of $Na^+$ and $K^+$ demonstrate that the dehydration free energy barriers by water molecules near the channel entrance and inside the channel are completely compensated for by attractive electrostatic interactions between the cations and carbonyl oxygens in the nanotube. In the case of $Cl^-$, the dehydration free energy barriers are not eliminated by an interaction between the anion and the peptide nanotube, leading to the high free energy barriers in the PMF profile. Calculations of the coordination numbers of the ions with oxygen atoms pertaining to either water molecules or carbonyl groups in the peptide nanotube reveal that the stabilization of the cations in the midplane regions of the nanotube arises from the favorable interaction of the cations with the negatively charged carbonyl oxygens.

Keywords

References

  1. Voet, D.; Voet, J. G. Biochemistry, 3rd ed.; John Wiley & Sons, Inc.: 2004; Vol. 1.
  2. MacKinnon, R. Angew. Chem. Int. Ed. 2004, 43, 4265. https://doi.org/10.1002/anie.200400662
  3. Hille, B. Ionic Channels of Excitable Membranes, 3rd ed.; Sinauer Associates, Inc.: Sunderland, Massachusettes, 2001.
  4. Roux, B. J. Phys. Chem. 1991, 95, 4856 https://doi.org/10.1021/j100165a049
  5. Allen, T. W.; Andersen, O. S.; Roux, B. Proc. Natl. Acad. Sci. USA 2004, 101, 117. https://doi.org/10.1073/pnas.2635314100
  6. Zhang, D.; Gullingsrud, J.; McCammon, J. A. J. Am. Chem. Soc. 2006, 128, 3019 https://doi.org/10.1021/ja057292u
  7. Lee, J.; Im, W. Phys. Rev. Lett. 2008, 100, 018103. https://doi.org/10.1103/PhysRevLett.100.018103
  8. Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.; Khazanovich, N. Nature 1993, 366, 324. https://doi.org/10.1038/366324a0
  9. Ghadiri, M. R.; Granja, J. R.; Buehler, L. K. Nature 1994, 369, 301. https://doi.org/10.1038/369301a0
  10. Ghadiri, M. R.; Kobayashi, K.; Granja, J. R.; Chadha, R. K.; McRee, D. E. Angew. Chem. Int. Ed. Engl. 1995, 34, 93. https://doi.org/10.1002/anie.199500931
  11. Motesharei, K.; Ghadiri, M. R. J. Am. Chem. Soc. 1997, 119, 11306 https://doi.org/10.1021/ja9727171
  12. Kim, H. S.; Hartgerink, J. D.; Ghadiri, M. R. J. Am. Chem. Soc. 1998, 120, 4417 https://doi.org/10.1021/ja9735315
  13. Fernadez-Lopez, S.; Kim, H. S.; Choi, E. C.; Delgado, M.; Granja, J. R.; Khasanov, A.; Kraehenbuehl, K.; Long, G.; Weinberger, D. A.; Wilcoxen, K. M.; Ghadiri, M. R. Nature 2001, 412, 452. https://doi.org/10.1038/35086601
  14. Sánchez-Quesada, J.; Ghadiri, M. R.; Bayley, H.; Braha, O. J. Am. Chem. Soc. 2000, 122, 11757.
  15. Engels, M.; Bashford, D.; Ghadiri, M. R. J. Am. Chem. Soc. 1995, 117, 9151 https://doi.org/10.1021/ja00141a005
  16. Asthagiri, D.; Bashford, D. Biophys. J. 2002, 82, 1176 https://doi.org/10.1016/S0006-3495(02)75475-1
  17. Tarek, M.; Maigret, B.; Chipot, C. Biophys. J. 2003, 85, 2287. https://doi.org/10.1016/S0006-3495(03)74653-0
  18. Khurana, E.; Nielsen, S. O.; Ensing, B.; Klein, M. L. J. Phys. Chem. 2006, page ASAP.
  19. Hwang, H.; Schatz, G. C.; Ratner, M. A. J. Phys. Chem. B 2006, 110, 26448. https://doi.org/10.1021/jp0657888
  20. Dehez, F.; Tarek, M.; Chipot, C. J. Phys. Chem. B 2007, 111, 10633. https://doi.org/10.1021/jp075308s
  21. MacKerell, A. D., Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. L., Jr.; Evanseck, J.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; III, W. E. R.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B 1998, 102, 3586. https://doi.org/10.1021/jp973084f
  22. Jorgensen, W. L.; Tirado-Rives, J. J. Am. Chem. Soc. 1988, 110, 1657. https://doi.org/10.1021/ja00214a001
  23. Beglov, D.; Roux, B. J. Chem. Phys. 1994, 100, 9050. https://doi.org/10.1063/1.466711
  24. Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comp. Chem. 2005, 26, 1781. https://doi.org/10.1002/jcc.20289
  25. Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996, 14, 33. https://doi.org/10.1016/0263-7855(96)00018-5
  26. Roux, B. Comp. Phys. Comm. 1995, 91, 275. https://doi.org/10.1016/0010-4655(95)00053-I
  27. In Free Energy Calculations; Chipot, C., Pohorille, A., Eds.; Springer: Berlin, 2007.
  28. Tuckerman, M. E. Statistical Mechanics: Theory and Molecular Simulation; Oxford University Press: Oxford, 2010.
  29. Roux, B.; Karplus, M. Biophys. J. 1991, 59, 961 https://doi.org/10.1016/S0006-3495(91)82311-6
  30. Grossfield, A. version 2.0.4, http://membrane.urmc.rochester.edu/content/wham 2010.
  31. Leung, K.; Rempe, S. B.; Lorenz, C. D. Phys. Rev. Lett. 2006, 96, 095504. https://doi.org/10.1103/PhysRevLett.96.095504
  32. Chang, R.; Violi, A. J. Phys. Chem. B 2006, 110, 5073. https://doi.org/10.1021/jp0565148
  33. Song, C.; Corry, B. J. Phys. Chem. B 2009, 113, 7642. https://doi.org/10.1021/jp810102u
  34. Sanchez-Quesada, J.; Isler, M. P.; Ghadiri, M. R. J. Am. Chem. Soc. 2002, 124, 10004. https://doi.org/10.1021/ja025983+

Cited by

  1. Exploring the Dynamic Behaviors and Transport Properties of Gas Molecules in a Transmembrane Cyclic Peptide Nanotube vol.117, pp.48, 2013, https://doi.org/10.1021/jp408769u
  2. Molecular dynamics study of Na+ transportation in a cyclic peptide nanotube and its influences on water behaviors in the tube vol.19, pp.10, 2013, https://doi.org/10.1007/s00894-013-1899-4
  3. in a Water-Filled Transmembrane Cyclic Peptide Nanotube vol.55, pp.5, 2015, https://doi.org/10.1021/acs.jcim.5b00025
  4. through a Cyclic Peptide Nanotube in Water and in Lipid Bilayers vol.120, pp.46, 2016, https://doi.org/10.1021/acs.jpcb.6b09638
  5. through a modified cyclic peptide nanotube promote energy landscape roughness vol.18, pp.46, 2016, https://doi.org/10.1039/C6CP06585F
  6. Transport properties of simple organic molecules in a transmembrane cyclic peptide nanotube vol.22, pp.5, 2016, https://doi.org/10.1007/s00894-016-2965-5
  7. Energetic and Frictional Effects in the Transport of Ions in a Cyclic Peptide Nanotube vol.38, pp.1, 2016, https://doi.org/10.1002/bkcs.11035
  8. Comparative study of stability and transport of molecules through cyclic peptide nanotube and aquaporin: a molecular dynamics simulation approach pp.1538-0254, 2019, https://doi.org/10.1080/07391102.2019.1570341
  9. Conformational Effects in the Transport of Glucose through a Cyclic Peptide Nanotube: A Molecular Dynamics Simulation Study vol.122, pp.34, 2012, https://doi.org/10.1021/acs.jpcb.8b05591
  10. Molecular Dynamics Simulations of Micelle Properties and Behaviors of Sodium Lauryl Ether Sulfate Penetrating Ceramide and Phospholipid Bilayers vol.124, pp.28, 2012, https://doi.org/10.1021/acs.jpcb.0c02856
  11. Study on the Assembly Mechanisms and Transport Properties of Transmembrane End-Charged Cyclic Peptide Nanotubes vol.61, pp.6, 2012, https://doi.org/10.1021/acs.jcim.1c00194