Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.2
/
pp.602-609
/
2021
Under accrual basic accounting, financial statements may be less reliable compared to cash basis accounting. The purpose of this study is to conduct an empirical analysis to determine the possibility of profit adjustment through the increase and decrease of deferred tax accounts. For our empirical analysis, a dummy variable of '1' was used as a dependent variable when the deferred tax net assets increased from the previous year and '0' when the deferred tax net assets decreased. Meanwhile, the variables of interest were discretionary accruals and ROA variation compared to the previous year. Logistic regression analysis was performed to establish the relevance between variables. Results found larger discretionary accruals related to lower net deferred tax assets compared to the previous year. In addition, there was a correlation between ROA and net deferred tax assets only if the ROA increased and net profit was greater than '0'. Study results will enable deferred tax information to be used in investment decision-making, and supervisory institutions can establish policies to prevent profit adjustments and enhance reporting standards.
One of the most intensively conducted research areas in business application study is a bankruptcy prediction model, a representative classification problem related to loan lending, investment decision making, and profitability to financial institutions. Many research demonstrated outstanding performance for bankruptcy prediction models using artificial intelligence techniques. However, since most machine learning algorithms are "black-box," AI has been identified as a prominent research topic for providing users with an explanation. Although there are many different approaches for explanations, this study focuses on explaining a bankruptcy prediction model using a counterfactual example. Users can obtain desired output from the model by using a counterfactual-based explanation, which provides an alternative case. This study introduces a counterfactual generation technique based on a genetic algorithm (GA) that leverages both domain knowledge (i.e., causal feasibility) and feature importance from a black-box model along with other critical counterfactual variables, including proximity, distribution, and sparsity. The proposed method was evaluated quantitatively and qualitatively to measure the quality and the validity.
In this study, we analyze and forecast quantum computer technology trends. Previous research has been mainly focused on application fields centered on technology for quantum computer technology trends analysis. Therefore, this paper analyzes important quantum computer technologies and performs future signal detection and prediction, for a more market driven technical analysis and prediction. As analyzing words used in news articles to identify rapidly changing market changes and public interest. This paper extends conference presentation of Cha & Chang (2022). The research is conducted by collecting domestic news articles from 2019 to 2021. First, we organize the main keywords through text mining. Next, we explore future quantum computer technologies through analysis of Term Frequency - Inverse Document Frequency(TF-IDF), Key Issue Map(KIM), and Key Emergence Map (KEM). Finally, the relationship between future technologies and supply and demand is identified through random forests, decision trees, and correlation analysis. As results of the study, the interest in artificial intelligence was the highest in frequency analysis, keyword diffusion and visibility analysis. In terms of cyber-security, the rate of mention in news articles is getting overwhelmingly higher than that of other technologies. Quantum communication, resistant cryptography, and augmented reality also showed a high rate of increase in interest. These results show that the expectation is high for applying trend technology in the market. The results of this study can be applied to identifying areas of interest in the quantum computer market and establishing a response system related to technology investment.
The term environmental, social and governance (ESG) was first used in the 2003 United Nations Environmental Programme Finance Initiative (UNEP FI). Among the three areas of ESG, environment refers to the impact of companies on the environment. Environmental factors address climate change policies and attempts to reduce emissions, waste and natural resource consumption. Social factors refer to the direction in which a company can improve the social impact of stakeholder includes employees, customers, communities, and governments involved in direct or indirect interaction with the organization itself and the company. Governance factors refer to stakeholders who make major decisions, the composition of the board of directors, their diversity and independence, and the internal policies that set limits and expectations for decision-making. Research related to ESG management is part of corporate social responsibility, sustainability, corporate or financial performance, and social responsibility investment. Through case studies and data-based empirical studies, it was confirmed that ESG management companies had positive results for most of the ESG related fields. Through literature analysis of domestic and international ESG history, introduction background, and management performance, this paper presents theoretical, practical implications by confirming that ESG's introduction and operation strategies are strong competitive strategies that directly affect corporate growth by creating attractive factors.
This study investigates how SMEs' (small and medium-sized enterprises) financing strategies affect firm valuation. Given that information asymmetry is engaged in firm valuation in the stock market, investors interpret the meanings of debt financing depending on how SMEs construct the portfolio of financing strategies (retained earnings vs debt financing), thereby making investment decision. Specifically, given that SMEs' debt financing has two meanings in the market signals, called "benefit" and "cost", this study postulates that firm valuation will be differently made by investors, depending on how they interpret the meanings of debt financing under choice competition between retained earnings and debt financing. In this study, we argue that under choice competition, as a SME's debt proportion increases, the "cost" signal outweighes the "benefit" signal, thereby decreasing firm valuation. Moreover, the effect of such signal can be contingent on the SME's characteristics-firm visibility. These ideas are examined using 363 U.S. SMEs ranging from 1971 to 2010. The fixed-effects models estimating Tobin's q show that under choice competition, a SME's debt proportion has a negative impact on firm valuation and that the firm's high visibility mitigates the effect of "cost" signal. In conclusion, this study sheds new light on how investors' interpretations of SMEs' financing strategies affect firm valuation.
Market instability offers opportunities as well as the need for careful innovation strategies and learning for a company's survival. Companies that find new opportunities decide to carry out innovation and decide on the size of their investments by considering their position in the market they are aiming for and the intensity of competition. This study was conducted to check whether obstacles to innovation face by SMEs in the manufacturing sector vary depending on the stage of corporate growth and to identify the impact of the government support system on the decision-making process on the performance of innovation. According to the analysis, there were differences in obstacles to innovation depending on the stage of corporate growth. It was found that more innovative SMEs are, more obstacles they face, and to overcome such obstacles, they try to access government support systems more. In addition, the use of a government support system eliminated obstacles to innovation, and the positive and significant effects of investing in innovation were identified. This study is meaningful in that it explicitly approached these hypotheses by applying a multistage model to the process of innovation carried out by SMEs in the manufacturing sector.
This study, with reference to data on economic conditions in Shandong Province, China, looked into trade and investment activities in Korea and major cities of Shandong - Qingdao, Yantai, Weihai and Jinan - and investigated claim cases between the two countries by type. In addition, we investigated the matter empirically by conducting a survey administered to 300 Korean companies investing in Shandong Province and, based on the data, tested hypotheses for inferential analysis. The findings are as follows: i) while hypotheses in which the size of a firm, represented by import and export volume, has a positive relation with the frequency of trade claim filings (H1) and with the financial value of the trade claims (H2) were quoted, company size proved to have a significantly negative relation with the time required to obtain a claim decision, which rejects the third hypothesis (H3) in which the relation was thought to be positive: ii) while products, as represented by the type of business, showed a clearly significant difference with the frequency of trade claim filings (H4) and with methods of preventing and responding to claims (H6), they did not show a significant link to the type of trade claim (H5). This study is a theoretical and empirical overview of Korean companies based in Shandong Province of China, and can be used to address the practical needs of the Korean companies looking to start business in Shandong Province.
Bitcoin is a blockchain technology-based digital currency that has been recognized as a representative cryptocurrency and a financial investment asset. Due to its highly volatile nature, Bitcoin has gained a lot of attention from investors and the public. Based on this popularity, numerous studies have been conducted on price and trend prediction using machine learning and deep learning. This study employed LSTM (Long Short Term Memory) and CNN (Convolutional Neural Networks), which have shown potential for predictive performance in the finance domain, to enhance the classification accuracy in Bitcoin price trend prediction. XAI(eXplainable Artificial Intelligence) techniques were applied to the predictive model to enhance its explainability and interpretability by providing a comprehensive explanation of the model. In the empirical experiment, CNN was applied to technical indicators and Google trend data to build a Bitcoin price trend prediction model, and the CNN model using both technical indicators and Google trend data clearly outperformed the other models using neural networks, SVM, and LSTM. Then SHAP(Shapley Additive exPlanations) was applied to the predictive model to obtain explanations about the output values. Important prediction drivers in input variables were extracted through global interpretation, and the interpretation of the predictive model's decision process for each instance was suggested through local interpretation. The results show that our proposed research framework demonstrates both improved classification accuracy and explainability by using CNN, Google trend data, and SHAP.
Gyoo Gun Lim;Dae Chul Lee;Hyuk Jin Kwon;Sung Rim Cho
Information Systems Review
/
v.19
no.3
/
pp.23-45
/
2017
The ROK military is making a great effort and investment in establishing network-centric warfare, a future battlefield concept, as a major step in the establishment of a basic plan for military innovation. In the military organization level, an advanced process is introduced to shorten the command control time of the military and the business process is improved to shorten the decision time. In the information system dimension, an efficient resource management is achieved by establishing an automated command control system and a resource management information system by using the battle management information system. However, despite these efforts, we must evaluate the present level of informatization in an objective manner and assess the current progress toward the future goal of the military by using objective indicators. In promoting informatization, we must systematically identify the correct areas of improvement and identify policy directions to supplement in the future. Therefore, by analyzing preliminary research, workshops, and expert discussions on the major informatization level evaluation models at home and abroad, this study develops an evaluation model and several indicators that systematically reflect the characteristics of military organizations. The developed informatization level evaluation model is verified by conducting a feasibility test for the troops of the operation class or higher. We expect that this model will be able to objectively diagnose the level of informatization of the ROK military by putting budget and resources into the right place at the right time and to rapidly improve the vulnerability of the information sector.
We propose network effects upon the investment decision of cloud-based ERP. Using the survey data collected from 82 companies in 2015, we examine whether IT managers have an intention to adopt real options in order to manage the risk of cloud-based ERP investments and how the network effects influence upon the intention to adopt real options. Based on prior literature, we propose a research model with 4 hypotheses. We find partial support of the hypotheses from the empirical analysis: technological risks has a positive impact upon the adoption of real options such as defer, contract, and abandon. In contrast, we find no significant impact of security risks upon real options. We validate positive network effects upon the adoption of real options such as defer, contract, and abandon. This work empirically find that IT managers in Korean middle and small sized firms have an intention to adopt real options when the managers realize economic, technological, and relationship risks and when they expect network effects.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.