• Title/Summary/Keyword: inverted pendulum system

Search Result 326, Processing Time 0.026 seconds

A Fault Detection system Design for Uncertain Nonlinear Systems (불확실한 비선형시스템을 위한 고장검출 시스템 설계)

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.185-189
    • /
    • 2007
  • This paper deals with a fault detection system design for nonlinear systems with uncertain time varying parameters modelled as a T-S fuzzy system. A coprime factorization for T-S fuzzy systems is defined and a residual generator is designed using a left coprime factor. A fault detection criteria derived from the residual generator is also suggested. In order to demonstrate the efficacy of the suggested method, the fault defection method is applied to an inverted pendulum system and computer simulations are performed.

A Fault Detection system Design for Uncertain Nonlinear Systems (불확실한 비선형시스템을 위한 고장검출 시스템 설계)

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.356-361
    • /
    • 2006
  • This paper deals with a fault detection system design for nonlinear systems with uncertain time varying parameters modelled as a T-S fuzzy system. A coprime factorization for T-S fuzzy systems is defined and a residual generator is designed using a left coprime factor. A fault detection criteria derived from the residual generator is also suggested. In order to demonstrate the efficacy of the suggested method, the fault detection method is applied to an inverted pendulum system and computer simulations are performed.

  • PDF

The Sampled-Data $H_{\infty}$ Problem: Obtaining an equivalent discrete-time system via a closed-loop expression of worst-case disturbance (샘플치 $H_{\infty}$ 문제: 최악의 외란의 폐경로 표현을 통한 등가의 이산시간 시스템 구현)

  • 공민종;조창호;이상철;조도현;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.340-340
    • /
    • 2000
  • This paper aims at deriving an equivalent finite dimensional discrete-time system for H$_{\infty}$ type problem for sampled-data control systems. A widely used ph is based on the lifting technique, but it needs somewhat complicate computation. Instead this paper derives an equivalent finite-dimensional discrete-time system directly from a description of the sampled-data system which is achieved via a closed-loop expression of the worst-case intersample disturbance.

  • PDF

Desing of a Controller for Rod Balancing System

  • Kim, Sang-Gyu;An, Jung-Hun;Hong, Sung-Hun;Kang, Mun-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.66.4-66
    • /
    • 2001
  • In this paper we have fabricated the two-dimensional Rod Balancing System which expands conventional one-dimensional inverted pendulum control system and designed its controller. The X-axis cart and Y-axis bar of the Rod Balancing System, which is composed of X-Y table, are actuated through timing belt by each of two geared DC motors, and the rod mounted on a X-axis cart can be brought to the desired position and maintained in a vertical position by motor-control. For the control of the Rod Balancing System, we used a fuzzy logic controller that is an approach to systems control when the exact mathematical model of the plant is unknown or the mathematical model is too complex to understand.

  • PDF

Direct Adaptive Fuzzy Control with Less Restrictions on the Control Gain

  • Phan, Phi Anh;Gale, Timothy J.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.621-629
    • /
    • 2007
  • In the adaptive fuzzy control field for affine nonlinear systems, there are two basic configurations: direct and indirect. It is well known that the direct configuration needs more restrictions on the control gain than the indirect configuration. In general, these restrictions are difficult to check in practice where mathematical models of plant are not available. In this paper, using a simple extension of the universal approximation theorem, we show that the only required constraint on the control gain is that its sign is known. The Lyapunov synthesis approach is used to guarantee the stability and convergence of the closed loop system. Finally, examples of an inverted pendulum and a magnet levitation system demonstrate the theoretical results.

A pole assignment control design for single-input double-output nonlinear mechanical systems

  • Kobayashi, Masahito;Tamura, Katsutoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.144-149
    • /
    • 1993
  • This paper discusses a design of a nonlinear control for a class of single-input double-output nonlinear mechanical systems. When conventional linearization methods are applied to the mechanical systems, some problems of oscillation and unstable phenomena arise. The proposed nonlinear control system resolves these problems. In this design the eigenvalues of the closed-loop nonlinear system are assigned to desired locations and local asymptotic stability of the closed-loop system. is guaranteed. The design method is applied to an inverted pendulum system with a moving weight mechanism. Experimental results show that the proposed nonlinear controller is more effective for stability than the usual linear controller.

  • PDF

Real-Time Networked Control System Design via Ethernet (Ethernet을 통한 실시간 네트워크 제어시스템 설계)

  • Kim, Chang-Yu;Lim, Hyun;Lee, Young-Sam;Kwo, Oh-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.136-138
    • /
    • 2006
  • Recently, network systems are widely used in several areas, and some considerable attentions have been directed to the Networked Control System(NCS). In NCS, network-induced delays are inevitable, and they sometimes degrade the performance of networked control systems to be a source of potential instability. In this paper, We proposes a compensation method for networked control system subject to network-induced delays by using a simple method, which is based on a sort of predictive strategy. To evaluate its feasibility and effectiveness, a real-time NCS for a rotary inverted pendulum is implemented via an Ethernet. Based on the experimental results. we show that the proposed simple method can be a practical and feasible solution to NCS design.

  • PDF

Design of nonlinear system controller based on radial basis function network (Radial Basis 함수 회로망을 이용한 비선형 시스템 제어기의 설계에 관한 연구)

  • 박경훈;이양우;차득근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1165-1168
    • /
    • 1996
  • The neural network approach has been shown to be a general scheme for nonlinear dynamical system identification. Unfortunately the error surface of a Multilayer Neural Network(MNN) that widely used is often highly complex. This is a disadvantage and potential traps may exist in the identification procedure. The objective of this paper is to identify a nonlinear dynamical systems based on Radial Basis Function Networks(RBFN). The learning with RBFN is fast and precise. This paper discusses RBFN as identification procedure is based on a nonlinear dynamical systems. and A design method of model follow control system based on RBFN controller is developed. As a result of applying this method to inverted pendulum, the simulation has shown that RBFN can be used as identification and control of nonlinear dynamical systems effectively.

  • PDF

Adaptive Fuzzy Controller Design Using Pole Assignment Compansator (극배치 보상기를 가진 적응 퍼지 제어기의 설계)

  • Choi, Chang-Ho;Hong, Dae-Seung;Ryu, Chang-Wan;Jeon, Sang-Yeong;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.862-864
    • /
    • 1999
  • Adaptive Fuzzy control system is very powerful in nonlinear system, but That system require exactly membership function and parameter. If the membership function and parameter are not exact, the system will generate chattering. Using the Pole assignment compensator can remove the chattering and steepest descent method can reduce the convergence time. In this Paper, this algorithm applicate to the Inverted pendulum, so save proof of algorithm that is to be vigorous.

  • PDF

Prarmeter Tuning of Fuzzy Cotroller using Neural Networks System Identifier (신경회로망 시스템 식별기를 이용한 퍼지제어기의 변수동조)

  • 이우영;최흥문
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.40-50
    • /
    • 1996
  • By using the neural networks(NN) as system identifier, the on-line self tuning method for fuzzy controller(FC) is proposed. In theis method, the learning of NN is carried out during control operation of FC and the cinsequent parameters of FC is tuned on-line automatically by means of system output errors backpropagated through NN. The Sugeno fuzzy model with constants as consequent parameters is selected for simplifying computation. In procedures of parameter tuning, the gradient descent method is used and the gradient vectors for adjusting the weight of NN are transferred as controller output errors. To evaluate the performance, the proposed method is applied to the inverted pendulum system.

  • PDF