• Title/Summary/Keyword: inversion algorithm

Search Result 293, Processing Time 0.023 seconds

Three-dimensional Inversion of Resistivity Data (전기비저항 탐사자료의 3차원 역산)

  • Yi Myeong-Jong;Kim Jung-Ho;Cho Seong-Jun;Chung Seung-Hwan;Song Yoonho
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.191-201
    • /
    • 1999
  • The interpretation of resistivity data has, so far, mainly been made under the assumption that the earth is of relatively simple structure and then using one or two-dimensional inversion scheme. Since real earth structure and topography are fully three-dimensional and very complicated In nature, however, such assumptions often lead to misinterpretation of the earth structures. In such situations, three-dimensional inversion is probably the only way to get correct image of the earth. In this study, we have developed a three-dimensional inversion code using the finite element solution for the forward problem. The forward modeling algorithm simulates the real field situation with irregular topography. The inverse problem is solved iteratively using the least-squares method with smoothness constraint. Our inversion scheme employs ACB (Active Constraint Balancing) to enhance the resolving power of the inversion. Including Irregular surface topography in the inversion, we can accurately define the earth structures without artifact in the numerical tests. We could get reasonable image of earth structure by Inverting the real field data sets taken over highway bridge construction site.

  • PDF

Development of an Extended EDS Algorithm for CAN-based Real-Time System (CAN기반 실시간 시스템을 위한 확장된 EDS 알고리즘 개발)

  • Lee, Byong-Hoon;Kim, Dae-Won;Kim, Hong-Ryeol
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2369-2373
    • /
    • 2001
  • Usually the static scheduling algorithms such as DMS (Deadline Monotonic Scheduling) or RMS(Rate Monotonic Scheduling) are used for CAN scheduling due to its ease with implementation. However, due to their inherently low utilization of network media, some dynamic scheduling approaches have been studied to enhance the utilization. In case of dynamic scheduling algorithms, two considerations are needed. The one is a priority inversion due to rough deadline encoding into stricted arbitration fields of CAN. The other is an arbitration delay due to the non-preemptive feature of CAN. In this paper, an extended algorithm is proposed from an existing EDS(Earliest Deadline Scheduling) approach of CAN scheduling algorithm haying a solution to the priority inversion. In the proposed algorithm, the available bandwidth of network media can be checked dynamically by all nodes. Through the algorithm, arbitration delay causing the miss of their deadline can be avoided in advance. Also non real-time messages can be processed with their bandwidth allocation. The proposed algorithm can achieve full network utilization and enhance aperiodic responsiveness, still guaranteeing the transmission of periodic messages.

  • PDF

A new algorithm for SIP parameter estimation from multi-frequency IP data: preliminary results (다중 주파수 IP 자료를 이용한 SIP 변수 추정)

  • Son, Jeong-Sul;Kim, Jung-Ho;Yi, Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.60-68
    • /
    • 2007
  • Conventional analysis of spectral induced polarization (SIP) data consists of measuring impedances over a range of frequencies, followed by spectral analysis to estimate spectral parameters. For the quantitative and accurate estimation of subsurface SIP parameter distribution, however, a sophisticated and stable inversion technique is required. In this study, we have developed a two-step inversion approach to obtain the two-dimensional distribution of SIP parameters. In the first inversion step, all the SIP data measured over a range of frequencies are simultaneously inverted, adopting cross regularisation of model complex resistivities at each frequency. The cross regularisation makes it possible to enhance the noise characteristics of the inversion by imposing a strong assumption, that complex resistivities should show similar characteristics over a range of frequencies. In numerical experiments, we could verify that our inversion approach successfully reduced inversion artefacts. As a second step, we have also developed an inversion algorithm to obtain SIP parameters based on the Cole-Cole model, in which frequency-dependent complex resistivities from the first step are inverted to obtain a two-dimensional distribution of SIP parameters. In numerical tests, the SIP parameter images showed a fairly good match with the exact model, which suggests that SIP imaging can provide a very useful subsurface image to complement resistivity.

Seismic Traveltime Tomography using Neural Network (신경망 이론을 이용한 탄성파 주시 토모그래피의 연구)

  • Kim, Tae-Yeon;Yoon, Wang-Jung
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.167-173
    • /
    • 1999
  • Since the resolution of the 2-D hole-to-hole seismic traveltime tomography is affected by the limited ray transmission angle, various methods were used to improve the resolution. Linear traveltime interpolation(LTI) ray tracing method was chosen for forward-modeling method. Inversion results using the LTI method were compared with those using the other ray tracing methods. As an inversion algorithm, SIRT method was used. In the iterative non-linear inversion method, the cost of ray tracing is quite expensive. To reduce the cost, each raypath was stored and the inversion was performed from this information. Using the proposed method, fast convergence was achieved. Inversion results are likely to be affected by the initial velocity guess, especially when the ray transmission angle was limited. To provide a good initial guess for the inversion, generalized regression neural network(GRNN) method was used. When the transmitted raypath angle is not limited or the geological model is very complex, the inversion results are not affected by initial velocity model very much. Since the raypath angles, however, are limited in most geophysical tomographic problems, the enhancement of resolution in tomography can be achieved by providing a proper initial velocity model by another inversion algorithm such as GRNN.

  • PDF

Time-Domain Geoacoustic Inversion via Light Bulb Source Signal Matching (전구음원 신호를 이용한 시간영역 지음향학적 인자 역산)

  • Kim Kyungseop;Park Cheolsoo;Kim Seongil;Seong Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.334-342
    • /
    • 2005
  • In this Paper. a time-domain geoacoustic inversion was performed using the bulb signals measured during MがU. 04 experiment conducted in the East Sea of Korea in 2004. An obiective function was defined as a direct cross-correlation between the measured and the simulated signals in time domain. The ray theory was used to model the wave propagation in time domain and optimizations were Performed using VFSA (very fast simulated annealing) algorithm. Comparison of inversion results with those from transmission loss matching (an accompanying paper in this issue of the Journal of the Acoustical Society of Korea) shows that Parameters are consistently inverted. Direct time series comparisons between the measured signals and the simulated signals are Presented based on inversion results.

Time Domain Seismic Waveform Inversion based on Gauss Newton method (시간영역에서 가우스뉴튼법을 이용한 탄성파 파형역산)

  • Sheen, Dong-Hoon;Baag, Chang-Eob
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.131-135
    • /
    • 2006
  • A seismic waveform inversion for prestack seismic data based on the Gauss-Newton method is presented. The Gauss-Newton method for seismic waveform inversion was proposed in the 80s but has rarely been studied. Extensive computational and memory requirements have been principal difficulties. To overcome this, we used different sizes of grids in the inversion stage from those of grids in the wave propagation simulation, temporal windowing of the simulation and approximation of virtual sources for calculating partial derivatives, and implemented this algorithm on parallel supercomputers. We show that the Gauss-Newton method has high resolving power and convergence rate, and demonstrate potential applications to real seismic data.

  • PDF

Formation Estimation of Shaly Sandstone Reservoir using Joint Inversion from Well Logging Data (복합역산을 이용한 물리검층자료로부터의 셰일성 사암 저류층의 지층 평가)

  • Choi, Yeonjin;Chung, Woo-Keen;Ha, Jiho;Shin, Sung-ryul
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • Well logging technologies are used to measure the physical properties of reservoirs through boreholes. These technologies have been utilized to understand reservoir characteristics, such as porosity, fluid saturation, etc., using equations based on rock physics models. The analysis of well logs is performed by selecting a reliable rock physics model adequate for reservoir conditions or characteristics, comparing the results using the Archie's equation or simandoux method, and determining the most feasible reservoir properties. In this study, we developed a joint inversion algorithm to estimate physical properties in shaly sandstone reservoirs based on the pre-existing algorithm for sandstone reservoirs. For this purpose, we proposed a rock physics model with respect to shale volume, constructed the Jacobian matrix, and performed the sensitivity analysis for understanding the relationship between well-logging data and rock properties. The joint inversion algorithm was implemented by adopting the least-squares method using probabilistic approach. The developed algorithm was applied to the well-logging data obtained from the Colony gas sandstone reservoir. The results were compared with the simandox method and the joint inversion algorithms of sand stone reservoirs.

An Efficient Algorithm for Computing Multiplicative Inverses in GF($2^m$) Using Optimal Normal Bases (최적 정규기저를 이용한 효율적인 역수연산 알고리즘에 관한 연구)

  • 윤석웅;유형선
    • The Journal of Society for e-Business Studies
    • /
    • v.8 no.1
    • /
    • pp.113-119
    • /
    • 2003
  • This paper proposes a new multiplicative inverse algorithm for the Galois field GF (2/sup m/) whose elements are represented by optimal normal basis type Ⅱ. One advantage of the normal basis is that the squaring of an element is computed by a cyclic shift of the binary representation. A normal basis element is always possible to rewrite canonical basis form. The proposed algorithm combines normal basis and canonical basis. The new algorithm is more suitable for implementation than conventional algorithm.

  • PDF

Effect of a Preprocessing Method on the Inversion of OH* Chemiluminescence Images Acquired for Visualizing SNG Swirl-stabilized Flame Structure (SNG 선회 안정화 화염구조 가시화를 위한 OH* 자발광 이미지 역변환에서 전처리 효과)

  • Ahn, Kwang Ho;Song, Won Joon;Cha, Dong Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.1
    • /
    • pp.24-31
    • /
    • 2015
  • Flame structure, which contains a useful information for studying combustion instability of the flame, is often quantitatively visualized with PLIF (planar laser-induced fluorescence) and/or chemiluminescence images. The latter, a line-integral of a flame property, needs to be preprocessed before being inverted, mainly due to its inherent noise and the axisymmetry assumption of the inversion. A preprocessing scheme utilizing multi-division of ROI (region of interest) of the chemiluminescence image is proposed. Its feasibility has been tested with OH PLIF and $OH^*$ chemiluminescence images of SNG (synthetic natural gas) swirl-stabilized flames taken from a model gas turbine combustor. It turns out that the multi-division technique outperforms two conventional ones: those are, one without preprocessing and the other with uni-division preprocessing, reconstructing the SNG flame structure much better than its two counterparts, when compared with the corresponding OH PLIF images. It is also found that the Canny edge detection algorithm used for detecting edges in the multi-division method works better than the Sobel algorithm does.

Improved full-waveform inversion of normalised seismic wavefield data (정규화된 탄성파 파동장 자료의 향상된 전파형 역산)

  • Kim, Hee-Joon;Matsuoka, Toshifumi
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.86-92
    • /
    • 2006
  • The full-waveform inversion algorithm using normalised seismic wavefields can avoid potential inversion errors due to source estimation required in conventional full-waveform inversion methods. In this paper, we have modified the inversion scheme to install a weighted smoothness constraint for better resolution, and to implement a staged approach using normalised wavefields in order of increasing frequency instead of inverting all frequency components simultaneously. The newly developed scheme is verified by using a simple two-dimensional fault model. One of the most significant improvements is based on introducing weights in model parameters, which can be derived from integrated sensitivities. The model-parameter weighting matrix is effective in selectively relaxing the smoothness constraint and in reducing artefacts in the reconstructed image. Simultaneous multiple-frequency inversion can almost be replicated by multiple single-frequency inversions. In particular, consecutively ordered single-frequency inversion, in which lower frequencies are used first, is useful for computation efficiency.