• Title/Summary/Keyword: inverse transform

Search Result 465, Processing Time 0.025 seconds

Implementatin of the Discrete Rotational Fourier Transform

  • Ahn, Tae-Chon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.3E
    • /
    • pp.74-77
    • /
    • 1996
  • In this paper we implement the Discrete Rotational Fourier Transform(DRFT) which is a discrete version of the Angular Fourier Transform and its inverse transform. We simplify the computation algorithm in [4], and calculate the complexity of the proposed implementation of the DRFT and the inverse DRFT, in comparison with the complexity of a DFT (Discrete Fourier Transform).

  • PDF

An Optimized Hardware Design for High Performance Residual Data Decoder (고성능 잔여 데이터 복호기를 위한 최적화된 하드웨어 설계)

  • Jung, Hong-Kyun;Ryoo, Kwang-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5389-5396
    • /
    • 2012
  • In this paper, an optimized residual data decoder architecture is proposed to improve the performance in H.264/AVC. The proposed architecture is an integrated architecture that combined parallel inverse transform architecture and parallel inverse quantization architecture with common operation units applied new inverse quantization equations. The equations without division operation can reduce execution time and quantity of operation for inverse quantization process. The common operation unit uses multiplier and left shifter for the equations. The inverse quantization architecture with four common operation units can reduce execution cycle of inverse quantization to one cycle. The inverse transform architecture consists of eight inverse transform operation units. Therefore, the architecture can reduce the execution cycle of inverse transform to one cycle. Because inverse quantization operation and inverse transform operation are concurrency, the execution cycle of inverse transform and inverse quantization operation for one $4{\times}4$ block is one cycle. The proposed architecture is synthesized using Magnachip 0.18um CMOS technology. The gate count and the critical path delay of the architecture are 21.9k and 5.5ns, respectively. The throughput of the architecture can achieve 2.89Gpixels/sec at the maximum clock frequency of 181MHz. As the result of measuring the performance of the proposed architecture using the extracted data from JM 9.4, the execution cycle of the proposed architecture is about 88.5% less than that of the existing designs.

QUALITATIVE UNCERTAINTY PRINCIPLES FOR THE INVERSE OF THE HYPERGEOMETRIC FOURIER TRANSFORM

  • Mejjaoli, Hatem
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.129-151
    • /
    • 2015
  • In this paper, we prove an $L^p$ version of Donoho-Stark's uncertainty principle for the inverse of the hypergeometric Fourier transform on $\mathbb{R}^d$. Next, using the ultracontractive properties of the semigroups generated by the Heckman-Opdam Laplacian operator, we obtain an $L^p$ Heisenberg-Pauli-Weyl uncertainty principle for the inverse of the hypergeometric Fourier transform on $\mathbb{R}^d$.

BASIC FORMULAS FOR THE DOUBLE INTEGRAL TRANSFORM OF FUNCTIONALS ON ABSTRACT WIENER SPACE

  • Chung, Hyun Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1131-1144
    • /
    • 2022
  • In this paper, we establish several basic formulas among the double-integral transforms, the double-convolution products, and the inverse double-integral transforms of cylinder functionals on abstract Wiener space. We then discuss possible relationships involving the double-integral transform.

APPLICATIONS OF THE REPRODUCING KERNEL THEORY TO INVERSE PROBLEMS

  • Saitoh, Saburou
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.371-383
    • /
    • 2001
  • In this survey article, we shall introduce the applications of the theory of reproducing kernels to inverse problems. At the same time, we shall present some operator versions of our fundamental general theory for linear transforms in the framework of Hilbert spaces.

  • PDF

Fast Reverse Jacket Transform and Its Inverse Transform (고속 리버스 자켓 변환과 그의 역변환)

  • 이승래;성굉모
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.4B
    • /
    • pp.423-426
    • /
    • 2001
  • 본 논문에서는 고속 리버스 자켓 역변환(inverse fast Reverse Jacket transform, 간략히 IFRJT)을 제안하며 이방법은 역변환을 explicit 하게 표현한다. 이 알고리즘의 장점은 중앙가중치 하다마드 변환보다 더 빠르고 쉽게 주어진 행렬의 역을 구한다는 점이다. 우리는 얼마나 간단히 IFRJT를 얻을 수 있는지를 예제를 통해 보여준다.

  • PDF

The Efficient 32×32 Inverse Transform Design for High Performance HEVC Decoder (고성능 HEVC 복호기를 위한 효율적인 32×32 역변환기 설계)

  • Han, Geumhee;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.953-958
    • /
    • 2013
  • In this paper, an efficient hardware architecture is proposed for $32{\times}32$ inverse transform HEVC decoder. HEVC is a new image compression standard to deal with much larger image sizes compared with conventional image codecs, such as 4k, 8k images. To process huge image data effectively, it adopts various new block structures. Theses blocks consists of $4{\times}4$, $8{\times}8$, $16{\times}16$, and $32{\times}32$ block. This paper suggests an effective structures to process $32{\times}32$ inverse transform. This structure of inverse transform adopts the decomposed $16{\times}16$ matrixes of $32{\times}32$ matrix, and simplified the operations by implementing multiplying with shifters and adders. Additionally the operations frequency is downed by using multicycle paths. Also this structure can be easily adopted to a multi-size transform or a forward transform block in HEVC codec.

A New Sparse Matrix Analysis of DFT Similar to Element Inverse Jacket Transform (엘레멘트 인버스 재킷 변환과 유사한 DFT의 새로운 희소 행렬 분해)

  • Lee, Kwang-Jae;Park, Dae-Chul;Lee, Moon-Ho;Choi, Seung-Je
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.440-446
    • /
    • 2007
  • This paper addresses a new representation of DFT matrix via the Jacket transform based on the element inverse processing. We simply represent the inverse of the DFT matrix following on the factorization way of the Jacket transform, and the results show that the inverse of DFT matrix is only simply related to its sparse matrix and the permutations. The decomposed DFT matrix via Jacket matrix has a strong geometric structure that exhibits a block modulating property. This means that the DFT matrix decomposed via the Jacket matrix can be interpreted as a block modulating process.

Performance Enhancement of Whistle Sound Source Tracking Algorithm using Time-Scale Filter Based on Wavelet Transform

  • Moon, Serng-Bae
    • Journal of Navigation and Port Research
    • /
    • v.28 no.2
    • /
    • pp.135-140
    • /
    • 2004
  • A purpose of developing a sound source tracking system in this paper is to reduce the noise efficiently from the received signal by microphone array and measure the signal's time delay between the microphones. I have applied the wavelet analysis algorithm to the system and calculated the sound source's relative position For the performance evaluation, I have compared with the results of utilizing the digital filtering methods based on the FIR LPF using Kaiser window function and the inverse Chebyshev IIR LPF. As a result, I have confirmed the fact that 'time-scale' filter using inverse discrete wavelet transform was suitable for this system.

The Inverse Laplace Transform of a Wide Class of Special Functions

  • Soni, Ramesh Chandra;Singh, Deepika
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.49-56
    • /
    • 2006
  • The aim of the present work is to obtain the inverse Laplace transform of the product of the factors of the type $s^{-\rho}\prod\limit_{i=1}^{\tau}(s^{li}+{\alpha}_i)^{-{\sigma}i}$, a general class of polynomials an the multivariable H-function. The polynomials and the functions involved in our main formula as well as their arguments are quite general in nature. On account of the general nature of our main findings, the inverse Laplace transform of the product of a large variety of polynomials and numerous simple special functions involving one or more variables can be obtained as simple special cases of our main result. We give here exact references to the results of seven research papers that follow as simple special cases of our main result.

  • PDF