• Title/Summary/Keyword: inverse optimality

Search Result 19, Processing Time 0.024 seconds

An Inverse Kinematics of Redundant Manipulators (여유 자유도 로봇의 역기구학에 관한 연구)

  • Cho, Dong-Kwon;Sung, Young-Hwee;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.399-402
    • /
    • 1993
  • In this paper, an inverse kinematics of redundant manipulators is proposed. Optimality-constraint based inverse kinematic algorithms have some problems because those algorithms are based on necessary conditions for optimality. Among the problems, switching from a maximum value to a minimum value may occur and make an inverse kinematic solution unstable while performing a given task. An inverse kinematic solution for protecting from the switchings is suggested. By sufficient conditions for optimality, the configuration space is defined as a set of regions, potentially good configuration region and potentially bad configuration region. Inverse kinematics solution within potentially good configuration region can provide joint trajectories without both singularities and switchings. Through a simulation of tracing a circle, we show the effectiveness of this inverse kinematics.

  • PDF

INVERSE PROBLEM FOR STOCHASTIC DIFFERENTIAL EQUATIONS ON HILBERT SPACES DRIVEN BY LEVY PROCESSES

  • N. U., Ahmed
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.813-837
    • /
    • 2022
  • In this paper we consider inverse problem for a general class of nonlinear stochastic differential equations on Hilbert spaces whose generating operators (drift, diffusion and jump kernels) are unknown. We introduce a class of function spaces and put a suitable topology on such spaces and prove existence of optimal generating operators from these spaces. We present also necessary conditions of optimality including an algorithm and its convergence whereby one can construct the optimal generators (drift, diffusion and jump kernel).

Parameter estimation of four-parameter viscoelastic Burger model by inverse analysis: case studies of four oil-refineries

  • Dey, Arindam;Basudhar, Prabir Kr.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.211-228
    • /
    • 2012
  • This paper reports the development of a generalized inverse analysis formulation for the parameter estimation of four-parameter Burger model. The analysis is carried out by formulating the problem as a mathematical programming formulation in terms of identification of the design vector, the objective function and the design constraints. Thereafter, the formulated constrained nonlinear multivariable problem is solved with the aid of fmincon: an in-built constrained optimization solver module available in MatLab. In order to gain experience, a synthetic case-study is considered wherein key issues such as the determination and setting up of variable bounds, global optimality of the solution and minimum number of data-points required for prediction of parameters is addressed. The results reveal that the developed technique is quite efficient in predicting the model parameters. The best result is obtained when the design variables are subjected to a lower bound without any upper bound. Global optimality of the solution is achieved using the developed technique. A minimum of 4-5 randomly selected data-points are required to achieve the optimal solution. The above technique has also been adopted for real-time settlement of four oil refineries with encouraging results.

LQ Inverse Optimal Consensus Protocol for Continuous-Time Multi-Agent Systems and Its Application to Formation Control (연속시간 다개체 시스템에 대한 LQ-역최적 상태일치 프로토콜 및 군집제어 응용)

  • Lee, Jae Young;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.526-532
    • /
    • 2014
  • In this paper, we present and analyze a LQ (Linear Quadratic) inverse optimal state-consensus protocol for continuous-time multi-agent systems with undirected graph topology. By Lyapunov analysis of the state-consensus error dynamics, we show the sufficient conditions on the algebraic connectivity of the graph to guarantee LQ inverse optimality and closed-loop stability. A more relaxed stability condition is also provided in terms of the algebraic connectivity. Finally, a formation control protocol for multiple mobile robots is proposed based on the target LQ inverse optimal consensus protocol, and the simulation results are provided to verify the performance of the proposed LQ inverse formation control method.

Kinematics and Robust PID Trajectory Tracking Control of Parallel Motion Simulator (병렬형 모션 시뮬레이터의 기구학적 해석과 강인 궤적추종 PID 제어기의 설계)

  • Hong, Seong-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.161-172
    • /
    • 2007
  • This article suggests an inverse kinematics analysis of a two degree of freedom spatial parallel motion simulator and design methodology of the robust PID controller. The parallel motion simulator consists of a fixed base and a moving frame connected by two serial chains, with each serial chain containing one revolute joint and two passive spherical joint. First, an inverse kinematics problems are solved in order to find the joint variable necessary to bring the end effector to track the desired trajectory. Second, an inverse optimal PID controller is proposed to track trajectories in the face of uncertainty. And the $H_{\infty}$ optimality and robust stability of the closed-loop system is acquired through the PID controller. Finally numerical results show the effectiveness of the PID controller that is designed by square/linear tuning laws.

A Study on the Subtask Performance Using Measure Constraint Locus for a Redundant Robot (여유자유도 로봇에 있어서 성능지수 제한궤적을 이용한 부작업의 성능에 관한 연구)

  • 최병욱;원종화;정명진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.10
    • /
    • pp.761-770
    • /
    • 1991
  • This paper suggests a measure constraint locus for characterization of the performance of a subtask for a redundant robot. The measure constraint locus are the loci of points satisfying the necessary constraint for optimality of measure in the joint configuration space. To uniquely obtain an inverse kinematic solution, one must consider both measure constraint locus and self-motion manifolds which are set of homogeneous solutions. Using measure constraint locus for maniqulability measure, the invertible workspace without singularities and the topological property of the configuration space for linding equilibrium configurations are analyzed. We discuss some limitations based on the topological arguments of measure constraint locus, of the inverse kinematic algorithm for a cyclic task. And the inverse kinematic algorithm using global maxima on self-motion manifolds is proposed and its property is studied.

  • PDF

Analysis on Optimality of Proportional Navigation Based on Nonlinear Formulation (비선형 운동방정식에 근거한 비례항법유도의 최적성에 관한 해석)

  • Jeon, In-Soo;Lee, Jin-Ik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.367-371
    • /
    • 2009
  • Analysis on optimality of the proportional navigation guidance(PNG) law is presented in this paper. While most of previous studies on optimality of PNG were relied on the linear formulation, this paper is based on the nonlinear formulation. The analysis shows that PNG is an optimal solution minimizing a range-weighted control energy, where the weighting function is an inverse of $\alpha$ power of the distance-to-target. We show that the navigation constant N is related to $\alpha$ directly. And also the conditions required to ensure the analysis result are investigated.

Design of ramp-stress accelerated life test plans for a parallel system with two independent components using masked data

  • Srivastava, P.W.;Savita, Savita
    • International Journal of Reliability and Applications
    • /
    • v.18 no.2
    • /
    • pp.45-63
    • /
    • 2017
  • In this paper, we have formulated optimum Accelerated Life Test (ALT) plan for a parallel system with two independent components using masked data with ramp-stress loading scheme and Type-I censoring. Consider a system of two independent and non-identical components connected in parallel. Such a system fails whenever all of its components has failed. The exact component that causes the system to fail is often unknown due to cost and time constraint. For each parallel system at test, we observe its system's failure time and a set of component that includes the component actually causing the system to fail. The stress-life relationship is modelled using inverse power law, and cumulative exposure model is assumed to model the effect of changing stress. The optimal plan consists in finding out the optimum stress rate using D-optimality criterion. The method developed has been explained using a numerical example and sensitivity analysis carried out.

  • PDF

Characteristics of optimal solutions in kinematic resolutions of redundancy

  • Park, Jonghoon;Chung, W.K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.908-913
    • /
    • 1993
  • The inverse kinematic solutions for redundant manipulators using the optimality augmented resolution schemes have been used without investigating the characteristics of the optimal solutions. The questions with this kind of resolution methods are answered in this paper, that is (i) the characteristics of solutions, (ii) of algorithmic singularities, (iii) their dimensionality, and (iv) the invariance of the characteristics during resolutions. 3-DOF planar redundant robot is analyzed when the inverse kinematic method is applied with the manipulability as an example.

  • PDF

Characterization of Singularity Avoidance Measures for a Redundant Robot (여유자유도 로봇을 위한 특이점 회피 성능지수들의 특성화)

  • 최병욱;원종화;정명진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.7
    • /
    • pp.42-51
    • /
    • 1992
  • This paper suggests a measure constraint locus which is the loci of points satisfying the necessary constraint for optimality of a measure in the configuration space. The characterization of four measures for singularity avoidance is worked out by using the measure constraint locus. It gives a global look at the performance of an inverse kinematic algorithm whien each of measures in a kinematically redundant robot is used. The invertible workspace without singularities and the topological properties both on the configuration and operational spaces are analyzed. We discuss also some limitations, based on the topological arguments of measure constraint locus, of the inverse kinematic algorithms, and compare global properties of each of measure. Therfore, a new concept called measure constraint locus gives a methodology for obtaining a conservative joint trajectory without singularities for almost entire workspace.

  • PDF