The Journal of Korean Association of Computer Education
/
v.6
no.3
/
pp.47-56
/
2003
We describe a new method for removing non-linear phased array antenna aberration called "squint" problem. To develop a compensation scheme. theoretical antenna and artificial neural networks were used. The purpose of using the artificial neural networks is to develop an antenna system model that represents the steering function of an actual array. The artificial neural networks are also used to implement an inverse model which when concatenated with the antenna or antenna model will correct the "squint" problem. Combining the actual steering function and the inverse model contained in the artificial neural network, alters the steering command to the antenna so that the antenna will point to the desired position instead of squinting. The use of an artificial neural network provides a method of producing a non-linear system that can correct antenna performance. This paper demonstrates the feasibility of generating an inverse steering algorithm with artificial neural networks.
Transactions of the Korean Society of Mechanical Engineers A
/
v.24
no.5
s.176
/
pp.1175-1182
/
2000
Diffraction systematically causes error in acoustic measurements. Most probes are designed to reduce this phenomenon. On the contrary, this paper proposes a spherical probe a] lowing acoustic inten sity measurements in three dimensions to be made, which creates a diffracted field that is well-defined, thanks to analytic solution of diffraction phenomena. Six microphones are distributed on the surface of the sphere along three rectangular axes. Its measurement technique is not based on finite difference approximation, as is the case for the ID probe but on the analytic solution of diffraction phenomena. In fact, the success of sound source identification depends on the inverse models used to estimate inverse diffraction phenomena, which has nonlinear properties. In this paper, we propose the concept of nonlinear inverse diffraction modeling using a neural network and the idea of 3 dimensional sound source identification with better performances. A number of computer simulations are carried out in order to demonstrate the diffraction phenomena under various angles. Simulations for the inverse modeling of diffraction phenomena have been successfully conducted in showing the superiority of the neural network.
Inverse kinematic problem is a crucial point for robot manipulator control. In this paper, to implement the Jacobian control technique we used the Hopfield(Tank)'s neural network. The states of neurons represent joint veocities, and the connection weights are determined from the current value of the Jacobian matrix. The network energy function is constructed so that its minimum corresponds to the minimum least square error. At each sampling time, connection weights and neuron states are updated according to current joint position. Inverse kinematic solution to the planar redundant manipulator is solved by computer simulation.
Proceedings of the Korean Nuclear Society Conference
/
1996.11a
/
pp.21-26
/
1996
The identification of radioactive source in a medium with a limited number of external detectors is introduced as an inverse radiation transport problem. This kind of inverse problem is usually ill-posed and severely under-determined, however, its applications are very useful in manu fields including medical diagnosis and nondestructive assay of nuclear materials. Therefore, it is desired to develop efficient and robust solution algorithms. As an approach to solving inverse problems, an artificial neural network is proposed. We develop a modified version of the conventional Hopfield neural network and demonstrate its efficiency and robustness.
Transactions of the Korean Society of Mechanical Engineers A
/
v.24
no.7
s.178
/
pp.1753-1762
/
2000
An inverse method is presented to obtain material's flow properties by using small punch test. This procedure employs, as the objective function of inverse analysis, the balance of measured load-di splacement response and calculated one during deformation. In order to guarantee convergence to global minimum, simulated annealing method was adopted to optimize the current objective function. In addition, artificial neural network was used to predict the load-displacement response under given material parameters which is the most time consuming and limits applications of global optimization methods to these kinds of problems. By implementing the simulated annealing for optimization along with calculating load-displacement curve by neural network, material parameters were identified irrespective of initial values within very short time for simulated test data. We also tested the present method for error-containing experimental data and showed that the flow properties of material were well predicted.
This paper presents a systematic design and training procedure for the feed-forward back-propagation neural network (NN) modeling of both forward and inverse behavior of a rotary magnetorheological (MR) damper based on experimental data. For the forward damper model, with damper force as output, an optimization procedure demonstrates accurate training of the NN architecture with only current and velocity as input states. For the inverse damper model, with current as output, the absolute value of velocity and force are used as input states to avoid negative current spikes when tracking a desired damper force. The forward and inverse damper models are trained and validated experimentally, combining a limited number of harmonic displacement records, and constant and half-sinusoidal current records. In general the validation shows accurate results for both forward and inverse damper models, where the observed modeling errors for the inverse model can be related to knocking effects in the measured force due to the bearing plays between hydraulic piston and MR damper rod. Finally, the validated models are used to emulate pure viscous damping. Comparison of numerical and experimental results demonstrates good agreement in the post-yield region of the MR damper, while the main error of the inverse NN occurs in the pre-yield region where the inverse NN overestimates the current to track the desired viscous force.
Electromagnetic forming is a type of high-speed forming process to deform a workpiece through a Lorentz force. As the high strain rate in an electromagnetic-forming simulation causes infeasibility in determining constitutive parameters, we employed inverse parameter estimation in the previous study. However, the inverse parameter estimation process required us to spend considerable time, which leads to an increase in computational cost. To overcome the computational obstacle, in this research, we applied two types of surrogate modeling methods and compared them to each other to evaluate which model is best for the electromagnetic-forming simulation. We exploited an artificial neural network and we reduced-order modeling methods. During the construction of a reduced-order model, we extracted orthogonal bases with proper orthogonal decomposition and predicted basis coefficients by utilizing an artificial neural network. After the construction of the surrogate models, we verified the artificial neural network and reduced-order models through training and testing samples. As a result, we determined the artificial neural network model is slightly more accurate than the reduced-order model. However, the construction of the artificial neural network model requires a considerably larger amount of time than that of the reduced-order model. Thus, a reduced order modeling method is more efficient than an artificial neural network for estimating the electromagnetic forming and for the rapid approximation of structural simulations which needs repetitive runs.
In this paper, we proposed an indirect learning and direct adaptive control schemes using neural networks, i.e., composite adaptive neural control, for a class of continuous nonlinear systems. With the indirect learning method, the neural network learns the nonlinear basis of the system inverse dynamics by a modified backpropagation learning rule. The basis spans the local vector space of inverse dynamics with the direct adaptation method when the indirect learning result is within a prescribed error tolerance, as such this method is closely related to the adaptive control methods. Also hash addressing technique, similar to the CMAC functional architecture, is introduced for partitioning network hidden nodes according to the system states, so global neuro control properties can be organized by the local ones. For uniform stability, the sliding mode control is introduced when the neural network has not sufficiently learned the system dynamics. With proper assumptions on the controlled system, global stability and tracking error convergence proof can be given. The performance of the proposed control scheme is demonstrated with the simulation results of a nonlinear system.
The Transactions of the Korean Institute of Electrical Engineers
/
v.39
no.9
/
pp.985-996
/
1990
An inverse kinematic solution of a robot manipulator using multilayer perceptrons is proposed. Neural networks allow the solution of some complex nonlinear equations such as the inverse kinematics of a robot manipulator without the need for its model. However, the back-propagation (BP) learning rule for multilayer perceptrons has the major limitation of being too slow in learning to be practical. In this paper, a new algorithm named Dynamically Reconfiguring BP is proposed to improve its learning speed. It uses a modified version of Kohonen's Self-Organizing Feature Map (SOFM) to partition the input space and for each input point, select a subset of the hidden processing elements or neurons. A subset of the original network results from these selected neuron which learns the desired mapping for this small input region. It is this selective property that accelerates convergence as well as enhances resolution. This network was used to learn the parity function and further, to solve the inverse kinematic problem of a robot manipulator. The results demonstrate faster learning than the BP network.
This paper presents an implementation of power system stabilizer using inverse dynamic neuro controller. Traditionally, mutilayer neural network is used for a universal approximator and applied to a system as a neuro-controller. In this case, at least two neural networks are used and continuous tuning of neuro-controller is required. Moreover, training of neural network is required considering all possible disturbances, which is impractical in real situation. In this paper, Taylor Model Based Inverse Dynamic Neuro Model (TMBIDNM) is introduced to avoid this problem. Inverse Dynamic Neuro Controller (IDNC) consists of TMBIDNM and Error Reduction Neuro Model (ERNM). Once the TMBIDNM is trained, it does not require retuning for cases with other types of disturbances. The controller is tested for one machine and infinite-bus power system for various operating conditions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.