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Abstract

The identification of radioactive source in a medium with a limited number of external de-
tectors is introduced as an inverse radiation transport problem. This kind of inverse problem
is usually ill-posed and severely under-determined, however, its applications are very useful
in many fields including medical diagnosis and nondestructive assay of nuclear materials.
Therefore, it is desired to develop efficient and robust solution algorithms. As an opproach
to solving inverse problems, an artificial neural network is proposed. We develop a modi-
fied version of the conventional Hopfield neural network and demonstrate its efficiency and

robustness.

1. Introduction

The phenomena of radiation transport within a given medium are described by Boltzmann
transport equation and using this equation we can calculate the boundary values. On the con-
trary, consider another problem that if we only know the boundary values(usually detected
values) then how to estimate where the sources are?

A problem involving the estimation of sources’ spatial distribution within a medium of
known properties and boundary conditions based on the measured external activities is a
kind of inverse radiation transport problem. Some methods for solving inverse radi-
ation transport problems are usually formulated in terms of constrained least squares and
their corresponding objective function. An artificial neural network, more precisely, Hopfield
Neural Network(HNN) was proposed as a new approach for these problems{1]. In some op-
timization problems, the HNN which has one-layered and fully interconnected neurons with
feed-back topology showed that it worked well with acceptable fault tolerance[2]. As proven
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by Takeda et al., when diagonal elements of the interconnection matrix are not zero, the HNN
becomes unstable. However, most problems including this identification problem require non-
zero diagonal elements when programmed on neural networks(3].

According to Soulie and Weisbuch, discrete random iteration could produce stable mini-
mum state of associative memory[4]. In this study, we modify the conventional HNN into a
new HNN which has random delayed updating intervals in order to alleviate the above unsta-
ble phenomenon. So we call it as “Delayed Hopfield-like Neural Network(DHNN)”.

2. Radioactive Source Identification with DHNN

Consider a uniform, isotropic medium which is divided into N uniform meshes and M
external detectors deployed around the medium. Under these assumptions, the measured
activity at i** detector is determined by

N
yi=zaij$j, i=1,---,M, (1)
i=1

where z; is the source strength in mesh j and the coefficient a;; which describes the attenu-
ation along the distance from mesh j to detector i is given by

1

aij = 7 exp(—prij). (2)

1]
In this study, the measurement vector y is expressed as a linear transformation A of the
desired solution vector x plus additive noise vector n

y = Ax+n, (3)

where A is the attenuation matrix whose elements are given by Eq. (2). What is common
to all these problems is that A is usually ill-conditioned, in other words, unstable to small
perturbations in input data. Although we know the inverse of A, its direct use often amplifies
noise and thereby prohibits a high quality recovery of x. All such problems are often named
“inverse problems”. ‘

This kind of inverse problem can be converted into least squares optimization problem
and solved with HNN. However as stated in Section 1, we apply some algorithms such as ran-
domized updating intervals, simulated annealing to guarantee and to improve stability of our
DHNN. Even if some modified strategies are applied, the stable performance is not expected
under additive noise environment. To overcome this undesired phenomenon, regularization
theory is adopted. The estimated solution % to this problem is formulated in terms of least
squares with a regularization term. In this approach, the objective function E is defined as
follows: ]

E=_lly - A%l]* + sMDxI?, (4)



where A is a Lagrangian multiplier and the last term is the regularization term; its purpose is
to force a distinctive constraint on the estimated solution X. The constant A determines the
relative importance of this term. The matrix D is a second-order differential operator and its
element is described as d;;.
A discretized objective function which should be minimized for the best estimated solution
is given as follows:
1M
E = 52‘1 X:auavJ + A( zd]z] : (5)
i=

The neural parameters that correspond to this obJectxve function are interconnection weight

term o
wyi = — Y _(aijaq + Mdijda), (6)
i=1
and threshold term .
0; = vias. (7)
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According to Hopfield, the updating of HNN is done as follows:

1. calculate the weighted sum u; for j** neuron at k% iteration,

wjl.’L‘;c +0;. (8)
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2. update sequentially(asynchronously),

1 u}“ >0,
gt =4 ok Wb =, (9)
0 uh<o

If diagonal elements of W), i.e., w;; are negative(in this problem) then a modified (randomized)
updating strategy will be better. For this purpose, we adopt random updating intervals as
delayed updating.

There is another sensitive point in this kind of optimization problem, that is, how to escape
from local minima? Therefore, we adopt a hill climbing strategy by simulated annealing using
Boltzmann transition rule. At each iteration, we calculate the energy difference of DHNN by

comparing present state energy with the previous one
AE = E(zx) — E(zk-1)- (10)

We accept the updated state if and only if AE < 0, otherwise, accept it by Boltzmann

transition rule )

1 +exp(—AE/T)

Prob(z > 1) = (11)



During this procedure, the parameter T' known as system temperature continuously de-
creases(simulated annealing) from an initial high value(hot state) to a given low value(cold
state)[5].

3. Results and Discussion

To evaluate DHNN, we consider a 10x10cm size medium which has 64 uniform meshes
with 3 distributed constant sources and 12 detectors as depicted in Fig. 1. The material
in the 2-D plane is assumed that its attenuation coefficient x4 is 0.002 cm™! and tested with
various Gaussian noise corrupted data. The noise level is given by signal-to-noise ratio(SNR)
and the lower SNR means the higher additive noise.

We consider that DHNN is converged when the energy of DHNN is less than the given
limit value or the neuron states are not changed during a certain iteration length. The DHNN
dynamics with respect to iterations shows the hill climbing search feature in Fig 2,

In the view of noise robustness, DHNN is converged to its stable state, i.e., identified source
locations with noise-free data quickly(typically a few seconds) and could identify perfectly.
Although the probability of successful identification decreases as the noise level increases,
the success rate is still above 80% until SNR is higher than about 23dB (Fig. 3). However,
the number of iterations shows not specific trend but oscillatory behavior mostly due to two
convergence criteria. For low level noise corrupted data, energy-limit criterion is dominant,
on the contrary, for high level noise, stability(fixed iteration) criterion is dominant.

As a concluding remark, DHNN can identify the source location efficiently and it also

works with reasonable robustness under certain noise environment.
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Figure 1: Description of Inverse Radiation Transport Problem
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Figure 2: Dynamics of the DHNN
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Figure 3: Robustness and Iterations with Respect to Noise
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