• 제목/요약/키워드: inverse neural network

검색결과 207건 처리시간 0.038초

A QP Artificial Neural Network Inverse Kinematic Solution for Accurate Robot Path Control

  • Yildirim Sahin;Eski Ikbal
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.917-928
    • /
    • 2006
  • In recent decades, Artificial Neural Networks (ANNs) have become the focus of considerable attention in many disciplines, including robot control, where they can be used to solve nonlinear control problems. One of these ANNs applications is that of the inverse kinematic problem, which is important in robot path planning. In this paper, a neural network is employed to analyse of inverse kinematics of PUMA 560 type robot. The neural network is designed to find exact kinematics of the robot. The neural network is a feedforward neural network (FNN). The FNN is trained with different types of learning algorithm for designing exact inverse model of the robot. The Unimation PUMA 560 is a robot with six degrees of freedom and rotational joints. Inverse neural network model of the robot is trained with different learning algorithms for finding exact model of the robot. From the simulation results, the proposed neural network has superior performance for modelling complex robot's kinematics.

RBF Network 를 이용한 표면온도 역추정에 관한 연구 (Inverse Estimation of Surface Temperature Using the RBF Network)

  • 정법성;이우일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1183-1188
    • /
    • 2004
  • The inverse heat conduction problem (IHCP) is a problem of estimating boundary condition from temperature measurement at one or more interior points. Neural networks are general information processing systems inspired by the connectionist theory of human brain. By properly training the network by the learning rule, the neural network method can handle many non-linear or other complex problems. In this work, neural network is applied to complicated inverse heat conduction problems. Efficiency of the procedure is enhanced by incorporating the radial basis functions (RBF). The RBF is trained faster than other neural network and can find smooth solution. In order to demonstrate the effectiveness of the current scheme, a typical one-dimensional IHCP is considered. At one surface, the temperature as well as the heat flux is known. The unknown temperature of interest is estimated on the other side of the slab. The results from the proposed method based on RBF neural network are compared with the conventional method.

  • PDF

신경회로망을 이용한 3관절 로봇 손가락의 역기구학 (Inverse Kinematics of Robot Fingers with Three Joints Using Neural Network)

  • 김병호
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.159-162
    • /
    • 2007
  • The inverse kinematics problem in robotics is an essential work for grasping and manipulation tasks by robotic and humanoid hands. In this paper, an intelligent neural learning scheme for solving such inverse kinematics of humanoid fingers is presented. Specifically, a multi-layered neural network is utilized for effective inverse kinematics, where a dynamic neural learning algorithm is employed. Also, a bio-mimetic feature of general human fingers is incorporated to the learning scheme. The usefulness of the proposed approach is verified by simulations.

  • PDF

Neural Networks Based Identification and Control of a Large Flexible Antenna

  • Sasaki, Minoru;Murase, Takuya;Ukita, Nobuharu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1711-1716
    • /
    • 2004
  • This paper presents identification and control of a 10-m antenna via accelerometers and angle encoder data. Artificial Neural Networks can be used effectively for the identification and control of nonlinear dynamical system such as a large flexible antenna. Some identification results are shown and compared with the results of conventional prediction error method. And we use a neural network inverse model for control the large flexible antenna. In the neural network inverse model, a neural network is trained, using supervised learning, to develop an inverse model of the antenna. The network input is the process output, and the network output is the corresponding process input. The control results show the validation of the ANN approach for identification and control of the 10-m flexible antenna.

  • PDF

불확실성이 있는 로봇 시스템의 역모델 학습에 의한 신경회로망 제어 (Neural network control by learning the inverse dynamics of uncertain robotic systems)

  • 김성우;이주장
    • 제어로봇시스템학회논문지
    • /
    • 제1권2호
    • /
    • pp.88-93
    • /
    • 1995
  • This paper presents a study using neural networks in the design of the tracking controller of robotic systems. Our strategy is to put to use the available knowledge about the robot manipulator, such as estimation models, in the contoller design via the computed torque method, and then to add the neural network to control the remaining uncertainty. The neural network used here learns to provide the inverse dynamics of the plant uncertainty, and acts as an inverse controller. In the simulation study, we verify that the proposed neural network controller is robust not only to structured uncertainties, but also to unstructured uncertainties such as friction models.

  • PDF

신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어 (Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks)

  • 오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.286-286
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어 (Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks)

  • 오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.154-161
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

  • PDF

New learning algorithm to solve the inverse optimization problems

  • Aoyama, Tomoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.42.2-42
    • /
    • 2002
  • We discuss a neural network solver for the inverse optimization problem. The problem is that find functional relations between input and output data, which are include defects. Finding the relations, predictions of the defect parts are also required. The part of finding the defects in the input data is an inverse problem . We consider the meanings to solve the problem on the neural network system at first. Next, we consider the network structure of the system, the learning scheme of the network, and at last, examine the precision on the numerical calculations. In the paper, we proposed the high-precision learning method for plural three-layer neural network system that is series-connect...

  • PDF

Neural network for servo control system

  • Hashimoto, Hideki;Endo, Junichi;Harashima, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.1125-1128
    • /
    • 1989
  • In this paper, the inverse model of a servo system is realized in a PDP-type neural network. The neural network learns the mapping between the input and output of the servo system. Some simulation results show the effectiveness of this inverse model obtained here.

  • PDF

Neural Network Image Reconstruction for Magnetic Particle Imaging

  • Chae, Byung Gyu
    • ETRI Journal
    • /
    • 제39권6호
    • /
    • pp.841-850
    • /
    • 2017
  • We investigate neural network image reconstruction for magnetic particle imaging. The network performance strongly depends on the convolution effects of the spectrum input data. The larger convolution effect appearing at a relatively smaller nanoparticle size obstructs the network training. The trained single-layer network reveals the weighting matrix consisting of a basis vector in the form of Chebyshev polynomials of the second kind. The weighting matrix corresponds to an inverse system matrix, where an incoherency of basis vectors due to low convolution effects, as well as a nonlinear activation function, plays a key role in retrieving the matrix elements. Test images are well reconstructed through trained networks having an inverse kernel matrix. We also confirm that a multi-layer network with one hidden layer improves the performance. Based on the results, a neural network architecture overcoming the low incoherence of the inverse kernel through the classification property is expected to become a better tool for image reconstruction.