• Title/Summary/Keyword: inverse mapping

Search Result 163, Processing Time 0.027 seconds

The study on the Intelligent Control of Robot using Fuzzy Inverse Kinematics Mapping (Fuzzy Inverse Kinematics Mapping을 이용한 로봇의 지능제어에 관한 연구)

  • 김관형;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.166-171
    • /
    • 1996
  • Generally, when we control the robot, we should calculate exactly Inverse Kinematics. However, Inverse Kinematics calculation is complex and it takes much time for the manipulator to control in real-time. Therefore, the calculation of Inverse Kinematics can result in significant control delay in real time. In this paper, we will present that Inverse Kinematics can be calculated through Fuzzy Logic Mapping, Based on an exact solution through fuzzy reasoning instead of Inverse Kinematics calculation Also, the result provides sufficient precision and transient tracking error can be controlled based on a fuzzy adaptive scheme proposed in this paper. Based on the Denavit-Hartenberg parameters specification, after the Jacobian matrix of arbitrary manipulator is calculated, we will construct Fuzzy Inverse Kinematics Mapping(FIKM) using fuzzy logic and represent a good control efficiency through simulation of 2-DOF manipulator.

  • PDF

STRONG CONVERGENCE THEOREMS FOR ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS AND INVERSE-STRONGLY MONOTONE MAPPINGS

  • He, Xin-Feng;Xu, Yong-Chun;He, Zhen
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • In this paper, we consider an iterative scheme for finding a common element of the set of fixed points of a asymptotically quasi nonexpansive mapping and the set of solutions of the variational inequality for an inverse strongly monotone mapping in a Hilbert space. Then we show that the sequence converges strongly to a common element of two sets. Using this result, we consider the problem of finding a common fixed point of a asymptotically quasi-nonexpansive mapping and strictly pseudocontractive mapping and the problem of finding a common element of the set of fixed points of a asymptotically quasi-nonexpansive mapping and the set of zeros of an inverse-strongly monotone mapping.

NEW HYBRID ALGORITHM FOR WEAK RELATIVELY NONEXPANSIVE MAPPING AND INVERSE-STRONGLY MONOTONE MAPPING IN BANACH SPACE

  • Zhang, Xin;Su, Yongfu;Kang, Jinlong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.87-102
    • /
    • 2011
  • The purpose of this paper is to prove strong convergence theorems for finding a common element of the set of fixed points of a weak relatively nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly-monotone mapping by a new hybrid method in a Banach space. We shall give an example which is weak relatively nonexpansive mapping but not relatively nonexpansive mapping in Banach space $l^2$. Our results improve and extend the corresponding results announced by Ying Liu[Ying Liu, Strong convergence theorem for relatively nonexpansive mapping and inverse-strongly-monotone mapping in a Banach space, Appl. Math. Mech. -Engl. Ed. 30(7)(2009), 925-932] and some others.

LOCAL EXISTENCE AND GLOBAL UNIQUENESS IN ONE DIMENSIONAL NONLINEAR HYPERBOLIC INVERSE PROBLEMS

  • Choi, Jong-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.4
    • /
    • pp.593-606
    • /
    • 2002
  • We prove local existence and global uniqueness in one dimensional nonlinear hyperbolic inverse problems. The basic key for showing the local existence of inverse solution is the principle of contracted mapping. As an application, we consider a hyperbolic inverse problem with damping term.

Three Dimensional Finite Element Inverse Analysis of Rectangular Cup and S-Rail Forming Processes using a Direct Mesh Mapping Method (직접 격자 사상법을 이용한 직사각컵 및 S-Rail 성형공정의 3차원 유한요소 역해석)

  • Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.81-84
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. In some drawing or stamping simulation with inverse method, it is difficult to apply inverse scheme due to the large aspect ratio or steep vertical angle of inclination. The reason is that initial guesses are hard to make out with present method for those cases. In this paper, a direct mesh marring scheme to generate initial guess on the sliding constraint surface described by finite element patches is suggested for one step inverse analysis to calculate initial blank shape. Radial type mapping is adopted for the simulation of rectangular cup drawing process with large aspect ratio and parallel type mapping for the simulation of S-Rail forming process with steep vertical angle of inclination.

  • PDF

STRONG CONVERGENCE THEOREMS FOR NONEXPANSIVE MAPPINGS AND INVERSE-STRONGLY-MONOTONE MAPPINGS IN A BANACH SPACE

  • Liu, Ying
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.627-639
    • /
    • 2010
  • In this paper, we introduce a new iterative sequence finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly-monotone mapping in a Banach space. Then we show that the sequence converges strongly to a common element of two sets. Using this result, we consider the problem of finding a common element of the set of fixed points of a nonexpansive mapping and the set of zeros of an inverse-strongly-monotone mapping, the fixed point problem and the classical variational inequality problem. Our results improve and extend the corresponding results announced by many others.

Solution Space of Inverse Differential Kinematics (역미분기구학의 해 공간)

  • Kang, Chul-Goo
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.230-244
    • /
    • 2015
  • Continuous-path motion control such as resolved motion rate control requires online solving of the inverse differential kinematics for a robot. However, the solution space of the inverse differential kinematics related to Jacobian J is not well-established. In this paper, the solution space of inverse differential kinematics is analyzed through categorization of mapping conditions between joint velocities and end-effector velocity of a robot. If end-effector velocity is within the column space of J, the solution or the minimum norm solution is obtained. If it is not within the column space of J, an approximate solution by least-squares is obtained. Moreover, this paper introduces an improved mapping diagram showing orthogonality and mapping clearly between subspaces, and concrete examples numerically showing the concept of several subspaces. Finally, a solver and graphics user interface (GUI) for inverse differential kinematics are developed using MATLAB, and the solution of inverse differential kinematics using the GUI is demonstrated for a vertically articulated robot.

Ductility inverse-mapping method for SDOF systems including passive dampers for varying input level of ground motion

  • Kim, Hyeong-Gook;Yoshitomi, Shinta;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.1
    • /
    • pp.59-81
    • /
    • 2012
  • A ductility inverse-mapping method for SDOF systems including passive dampers is proposed which enables one to find the maximum acceleration of ground motion for the prescribed maximum response deformation. In the conventional capacity spectrum method, the maximum response deformation is computed through iterative procedures for the prescribed maximum acceleration of ground motion. This is because the equivalent linear model for response evaluation is described in terms of unknown maximum deformation. While successive calculations are needed, no numerically unstable iterative procedure is required in the proposed method. This ductility inverse-mapping method is applied to an SDOF model of bilinear hysteresis. The SDOF models without and with passive dampers (viscous, viscoelastic and hysteretic dampers) are taken into account to investigate the effectiveness of passive dampers for seismic retrofitting of building structures. Since the maximum response deformation is the principal parameter and specified sequentially, the proposed ductility inverse-mapping method is suitable for the implementation of the performance-based design.

Extended and Adaptive Inverse Perspective Mapping for Ground Representation of Autonomous Mobile Robot (모바일 자율 주행 로봇의 지면 표현을 위한 확장된 적응형 역투영 맵핑 방법)

  • Jooyong Park;Younggun Cho
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.59-65
    • /
    • 2023
  • This paper proposes an Extended and Adaptive Inverse Perspective Mapping (EA-IPM) model that can obtain an accurate bird's-eye view (BEV) from the forward-looking monocular camera on the sidewalk with various curves. While Inverse Perspective Mapping (IPM) is a good way to obtain ground information, conventional methods assume a fixed relationship between the camera and the ground. Due to the nature of the driving environment of the mobile robot, there are more walking environments with frequent motion changes than flat roads, which have a fatal effect on IPM results. Therefore, we have developed an extended IPM process to be applicable in IPM on sidewalks by adding a formula for complementary Y-derive processes and roll motions to the existing adaptive IPM model that is robust to pitch motions. To convince the performance of the proposed method, we evaluated our results on both synthetic and real road and sidewalk datasets.