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STRONG CONVERGENCE THEOREMS

FOR NONEXPANSIVE MAPPINGS AND

INVERSE-STRONGLY-MONOTONE MAPPINGS

IN A BANACH SPACE

Ying Liu

Abstract. In this paper, we introduce a new iterative sequence for find-
ing a common element of the set of fixed points of a nonexpansive map-

ping and the set of solutions of the variational inequality for an inverse-

strongly-monotone mapping in a Banach space. Then we show that the
sequence converges strongly to a common element of two sets. Using

this result, we consider the problem of finding a common element of the

set of fixed points of a nonexpansive mapping and the set of zeros of
an inverse-strongly-monotone mapping, the fixed point problem and the

classical variational inequality problem. Our results improve and extend
the corresponding results announced by many others.

1. Introduction

Let E be a real Banach space with norm ‖ · ‖, let E∗ denote the dual of
E and let 〈x, f〉 denote the value of f ∈ E∗ at x ∈ E. Suppose that C is a
nonempty, closed convex subset of E and A is a monotone operator of C into
E∗. Then we study the problem of finding a point u ∈ C such that

〈v − u,Au〉 ≥ 0 ∀v ∈ C. (1.1)

This problem is called the variational inequality problem [8]. The set of so-
lutions of the variational inequality problem is denoted by V I(C,A). Such a
problem is connected with the convex minimization problem, the complemen-
tarity problem, the problem of finding a point u ∈ E satisfying 0 = Au and so
on. An operator A of C into E∗ is said to be inverse-strongly-monotone [4,7,9]
if there exists a positive real number α such that

〈x− y,Ax−Ay〉 ≥ α‖Ax−Ay‖2
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for all x, y ∈ C. In such a case, A is said to be α−inverse-strongly-monotone. If
A is an α−inverse-strongly-monotone mapping of C into E∗, then it is obvious
that A is 1

α−Lipschitz continuous.
A mapping T of C into E is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.
We denoted by F (T ) the set of fixed points of T. In 2005, Iiduka and Taka-
hashi[5] proved strong convergence theorems for finding a common element of
the set of solution of the variational inequality problem for an inverse-strongly-
monotone mapping and the set of fixed points of a nonexpansive mapping in a
Hilbert space. In 2008, Matsushita and Takahashi[10]proved a strong conver-
gence theorem for a nonexpansive mapping T in a Banach space by using the
following hybrid method:

x0 = x ∈ C,
Cn = c̄o{z ∈ C : ‖z − Tz‖ ≤ tn‖xn − Txn‖},
Dn = {z ∈ C : 〈xn − z, J(x− xn)〉 ≥ 0},

xn+1 = PCn

⋂
Dn
x, n = 0, 1, 2, · · · ,

(1.2)

where PCn
⋂
Dn

is the metric projection from C into Cn
⋂
Dn, c̄oD denotes

the convex closure of the set D and {tn} is a sequence in (0, 1) with tn → 0
as n → ∞. Then, they proved that the sequence {xn} converges strongly to
PF (T )x. Recently, Iiduka and Takahashi[6] proved a weak convergence theorem
for finding a solution of the variational inequality problem for an operator A
that satisfies the following conditions in a 2-uniformly convex and uniformly
smooth Banach space E :

(A1) A is α−inverse-strongly-monotone;
(A2) V I(C,A) 6= ∅;
(A3) ‖Ay‖ ≤ ‖Ay −Au‖ for all y ∈ C and u ∈ V I(C,A).
Inspired and motivated by these facts, our purpose in this paper is to obtain a

strong convergence theorem for finding a common element of the set of solutions
of a variational inequality problem and the set of fixed points of a nonexpansive
mapping in a Banach space by using the hybrid method. Our results generalize
the results of [5] from Hilbert spaces to Banach spaces. Furthermore, our results
also generalize the result of [6] from weak convergence to strong convergence.

2. Preliminaries

Throughout this paper, we denote by N and R the sets of positive integers
and real numbers, respectively. When {xn} is a sequence in E, we denote
strong convergence of {xn} to x ∈ E by xn → x and weak convergence by
xn ⇀ x.

A multi-valued operator S : E → 2E
∗

with domain D(S) = {z ∈ E : Sz 6=
∅} and range R(S) =

⋃
{Sz ∈ E∗ : z ∈ D(S)} is said to be monotone if

〈x1 − x2, y1 − y2〉 ≥ 0 for each xi ∈ D(S) and yi ∈ Sxi, i = 1, 2. A monotone
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operator S is said to be maximal if its graph G(S) = {(x, y) : y ∈ Sx} is not
properly contained in the graph of any other monotone operator.

Let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to be strictly convex
if for any x, y ∈ U and x 6= y implies ‖x+y

2 ‖ < 1. It is also said to be uniformly
convex if for each ε ∈ (0, 2], there exists δ > 0 such that for any x, y ∈ U,
‖x−y‖ ≥ ε implies ‖x+y

2 ‖ ≤ 1−δ. It is known that a uniformly convex Banach
space is reflexive and strictly convex. And we define a function δ : [0, 2]→ [0, 1]
called the modulus of convexity of E as follows:

δ(ε) = inf{1− ‖x+ y

2
‖ : x, y ∈ U, ‖x− y‖ ≥ ε}.

Then E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. Let p be
a fixed real number with p ≥ 2. A Banach space E is said to be p−uniformly
convex if there exists a constant c > 0 such that δ(ε) ≥ cεp for all ε ∈ [0, 2]. For
example, see [3] and [13] for more details. We know the following fundamental
characterization [3,6] of p−uniformly convex Banach spaces:

Lemma 2.1. ([3]) Let p be a real number with p ≥ 2 and let E be a Banach
space. Then E is p−uniformly convex if and only if there exists a constant
0 < c ≤ 1 such that

1

2
(‖x+ y‖p + ‖x− y‖p) ≥ ‖x‖p + cp‖y‖p (2.1)

for all x, y ∈ E.

The best constant 1/c in Lemma 2.1 is called the p−uniformly convexity

constant of E[3]. Putting x = (u+v)
2 and y = (u−v)

2 in (2.1), we readily conclude
that, for all u, v ∈ E,

1

2
(‖u‖p + ‖v‖p) ≥ ‖u+ v

2
‖p + cp‖u− v

2
‖p. (2.2)

A Banach space E is said to be smooth if the limit

lim
n→∞

‖x+ ty‖ − ‖x‖
t

(2.3)

exists for all x, y ∈ U. It is also said to be uniformly smooth if the limit (2.3)
is attained uniformly for x, y ∈ U. One should note that no Banach space is
p−uniformly convex for 1 < p < 2; see [13] for more details. It is well known
that Hilbert and the Lebesgue Lq(1 < q ≤ 2) spaces are 2−uniformly convex,
uniformly smooth.

On the other hand, with each p > 1, the (generalized) duality mapping Jp
from E into 2E

∗
is defined by

Jp(x) := {v ∈ E∗ : 〈x, v〉 = ‖x‖p, ‖v‖ = ‖x‖p−1}, ∀x ∈ E.

In particular, J = J2 is called the normalized duality mapping. If E is a Hilbert
space, then J = I, where I is the identity mapping. The duality mapping J
has the following properties:
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(i) if E is smooth, then J is single-valued;
(ii) if E is strictly convex, then J is one-to-one;
(iii) if E is reflexive, then J is surjective.
(iv) if E is uniformly smooth, then J is uniformly norm-to-norm continuous

on each bounded subset of E.

Lemma 2.2. ([6]) Let p be a given real number with p ≥ 2 and let E be
a p−uniformly convex Banach space. Then, for all x, y ∈ E, jx ∈ Jpx and
jy ∈ Jpy,

〈x− y, jx − jy〉 ≥
cp

2p−2p
‖x− y‖p,

where Jp is the generalized duality mapping of E and 1/c is the p−uniformly
convexity constant of E.

A Banach space E is said to have the K-K property if a sequence {xn} of E
satisfying that xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, then xn → x. It is known that
if E is uniformly convex, then E has the K-K property. Let E be a smooth
Banach space. The function φ : E × E → R is defined by

φ(y, x) = ‖y‖2 − 2〈y, Jx〉+ ‖x‖2

for all x, y ∈ E. It is obvious from the definition of the function φ that

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖+ ‖x‖)2 ∀x, y ∈ E. (2.4)

Remark 1. From Remark 2.1 of [11], we know that φ(x, y) = 0 if and only if
x = y.

Lemma 2.3. ([11]) Let E be a uniformly convex and smooth Banach space
and let {yn}, {zn} be two sequences of E. If φ(yn, zn)→ 0, and either {yn}, or
{zn} is bounded, then yn − zn → 0.

Let C be a nonempty closed convex subset of E. Suppose that E is reflexive,
strictly convex and smooth. Then, for any x ∈ E, there exists a unique element
x0 ∈ C such that

φ(x0, x) = min
y∈C

φ(y, x).

The mapping ΠC : E → C defined by ΠCx = x0 is called the generalized
projection [2,6,11]. In a Hilbert space, ΠC = PC(metric projection). The
following are well-known results.

Remark 2. From Remark 1, it is easy to see that ΠE = I.

Lemma 2.4. ([2, 6, 11]) Let C be a nonempty closed convex subset of a smooth
Banach space E and x ∈ E. Then, x0 = ΠCx if and only if

〈x0 − y, Jx− Jx0〉 ≥ 0

for all y ∈ C.
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Lemma 2.5. ([2, 6, 11]) Let E be a reflexive, strictly convex and smooth
Banach space, let C be a nonempty closed convex subset of E and let x ∈ E.
Then

φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x)

for all y ∈ C.

Lemma 2.6. ([10]) Let C be a closed convex subset of a uniformly convex
Banach space. Then for each r > 0, there exists a strictly increasing convex
continuous function γ : [0,∞)→ [0,∞) such that γ(0) = 0 and

γ(‖T (

n∑
j=0

λjxj)−
n∑
j=0

λjTxj‖) ≤ max
0≤j<k≤n

(‖xj − xk‖ − ‖Txj − Txk‖)

for all n ∈ N , {λi}ni=0 ∈ ∆n, {xi}ni=0 ⊂ C
⋂
Br and T ∈ Lip(C, 1), where

∆n = {{λ0, λ1, λ2, · · ·, λn} : 0 ≤ λi(0 ≤ i ≤ n) and
n∑
i=0

λi = 1}, Br = {z ∈ E :

‖z‖ ≤ r} and Lip(C, 1) is the set of all nonexpansive mappings from C into E.

Let E be a reflexive, strictly convex, smooth Banach space and let J be the
duality mapping from E into E∗. Then J−1 is also single-valued, one-to-one,
surjective, and it is the duality mapping from E∗ into E. We make use of the
following mapping V studied in Alber [1]:

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2 (2.5)

for all x ∈ E and x∗ ∈ E∗. In other words, V (x, x∗) = φ(x, J−1(x∗)) for all
x ∈ E and x∗ ∈ E∗. For each x ∈ E, the mapping g defined by g(x∗) = V (x, x∗)
for all x∗ ∈ E∗ is a continuous, convex function from E∗ into R. We know the
following lemma [1]:

Lemma 2.7. ([1]) Let E be a reflexive, strictly convex, smooth Banach space
and let V be as in (2.5). Then

V (x, x∗) + 2〈J−1(x∗)− x, y∗〉 ≤ V (x, x∗ + y∗)

for all x ∈ E and x∗, y∗ ∈ E∗.

An operator A of C into E∗ is said to be hemicontinuous if for all x, y ∈ C,
the mapping f of [0, 1] into E∗ defined by f(t) = A(tx+ (1− t)y) is continuous
with respect to the weak∗ topology of E∗. We denote by NC(v) the normal
cone for C at a point v ∈ C, that is,

NC(v) = {x∗ ∈ E∗ : 〈v − y, x∗〉 ≥ 0 for all y ∈ C}.
We know the following theorem [12]:

Theorem 2.8. (See Rockafellar [12]) Let C be a nonempty, closed convex
subset of a Banach space E and let A be a monotone, hemicontinuous operator
of C into E∗. Let T ⊂ E × E∗be an operator defined as follows:

Tv =

{
Av +NC(v), v ∈ C,

∅, v∈̄C.
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Then T is maximal monotone and T−10 = V I(C,A).

Lemma 2.9. ([6]) Let C be a nonempty, closed convex subset of a Banach
space E and let A be a monotone, hemicontinuous operator of C into E∗. Then

V I(C,A) = {u ∈ C : 〈v − u,Av〉 ≥ 0 for all v ∈ C}.

It is obvious from Lemma 2.9 that the set V I(C,A) is a closed convex subset
of C.

3. Main results

Theorem 3.1. Let E be a 2-uniformly convex, uniformly smooth Banach space.
Let C be a nonempty, closed convex subset of E. Assume that A is an operator
of C into E∗ that satisfies the conditions (A1) − (A3). Assume that T is a
nonexpansive mapping from C into itself such that F = F (T )

⋂
V I(C,A) 6= ∅.

The sequence {xn} is defined by

x0 ∈ C chosen arbitrarily,

yn = J−1(βnJxn + (1− βn)JΠC(J−1(Jxn − λnAxn))),

C̄n = c̄o{z ∈ C : ‖z − Tz‖ ≤ tn‖xn − Txn‖},

C̃n = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},

Cn = C̄n
⋂
C̃n,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn

⋂
Qn
x0,

(3.1)

where {βn} and {tn} satisfy: 0 ≤ βn < 1, and lim sup
n→∞

βn < 1, {tn} ⊂ (0, 1)

and lim
n→∞

tn = 0. If {λn} is chosen so that λn ∈ [a, b] for some a, b with

0 < a < b < c2α/2, then the sequence {xn} converges strongly to ΠFx0, where
1
c is the 2−uniformly convexity constant of E.

Proof. From the definition of Cn and Qn, it is obvious that Cn
⋂
Qn is closed

and convex for each n ∈ N
⋃
{0}. Next, we show that F ⊂ Cn

⋂
Qn for all

n ∈ N
⋃
{0}. Put un = J−1(Jxn − λnAxn) for every n ∈ N

⋃
{0}. Let p ∈ F .

It holds from Lemmas 2.5 and 2.7 that

φ(p,ΠCun) ≤ φ(p, un)

= V (p, Jxn − λnAxn)

≤ V (p, (Jxn − λnAxn) + λnAxn)

− 2〈J−1(Jxn − λnAxn)− p, λnAxn〉
= V (p, Jxn)− 2λn〈un − p,Axn〉
= φ(p, xn)− 2λn〈xn − p,Axn〉+ 2〈un − xn,−λnAxn〉

(3.2)
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for every n ∈ N
⋃
{0}. From the condition(A1) and p ∈ V I(C,A), we have

−2λn〈xn − p,Axn〉 = −2λn〈xn − p,Axn −Ap〉 − 2λn〈xn − p,Ap〉
≤ −2λnα‖Axn −Ap‖2

(3.3)

for every n ∈ N
⋃
{0}. By Lemma 2.2 and the condition(A3), we also have

2〈un − xn,−λnAxn〉 = 2〈J−1(Jxn − λnAxn)− J−1Jxn,−λnAxn〉
≤ 2‖J−1(Jxn − λnAxn)− J−1(Jxn)‖‖λnAxn‖

≤ 4

c2
‖Jxn − λnAxn − Jxn‖‖λnAxn‖

=
4

c2
λ2
n‖Axn‖2

≤ 4

c2
λ2
n‖Axn −Ap‖2.

(3.4)

Therefore, from (3.3), (3.4) and (3.2), we have

φ(p,ΠCun) ≤ φ(p, xn) + 2a(
2

c2
b− α)‖Axn −Ap‖2. (3.5)

Then, by the convexity of ‖ · ‖2 and (3.5), we have

φ(p, yn) = ‖p‖2 − 2〈p, βnJxn + (1− βn)JΠCun〉
+ ‖βnJxn + (1− βn)JΠCun‖2

≤ ‖p‖2 − 2βn〈p, Jxn〉 − 2(1− βn)〈p, JΠCun〉+ βn‖xn‖2

+ (1− βn)‖ΠCun‖2

= βnφ(p, xn) + (1− βn)φ(p,ΠCun)

≤ φ(p, xn) + (1− βn)2a(
2

c2
b− α)‖Axn −Ap‖2

≤ φ(p, xn).

(3.6)

Thus, we have p ∈ C̃n. It is obvious that p ∈ C̄n. Therefore we obtain F ⊂ Cn
for each n ∈ N

⋃
{0}. Using the same argument presented in the proof of [11,

Theorem 3.1;pp.261-262] we have F ⊂ Cn
⋂
Qn for each n ∈ N

⋃
{0}. This

implies that {xn} is well defined. It follows from the definition of Qn and
lemma 2.4 that xn = ΠQn

x0. Using xn = ΠQn
x0 and lemma 2.5, we have

φ(xn, x0) ≤ φ(p, x0)− φ(p, xn) ≤ φ(p, x0)

for each p ∈ F ⊂ Qn for each n ∈ N
⋃
{0}. Therefore, φ(xn, x0) is bounded.

Moreover, from (2.4), we have that {xn} is bounded.
Since xn+1 = ΠCn

⋂
Qn
x0 ∈ Qn, and xn = ΠQn

x0, we have φ(xn, x0) ≤
φ(xn+1, x0) for each n ∈ N

⋃
{0}. Therefore, {φ(xn, x0)} is nondecreasing. So

there exists the limit of φ(xn, x0). From the lemma 2.5, we have

φ(xn+1, xn) ≤ φ(xn+1, x0)− φ(xn, x0)
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for each n ∈ N
⋃
{0}. This implies that lim

n→∞
φ(xn+1, xn) = 0. Since xn+1 =

ΠCn
⋂
Qn
x0 ∈ Cn ⊂ C̃n, from the definition of C̃n, we also have

φ(xn+1, yn) ≤ φ(xn+1, xn)

for each n ∈ N
⋃
{0}. Tending n → ∞, we have lim

n→∞
φ(xn+1, yn) = 0. Using

lemma 2.3, we obtain

lim
n→∞

‖xn+1 − yn‖ = lim
n→∞

‖xn+1 − xn‖ = 0. (3.7)

From ‖xn − yn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖, we have

‖xn − yn‖ → 0, (n→∞). (3.8)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖Jxn+1 − Jyn‖ = lim
n→∞

‖Jxn+1 − Jxn‖ = lim
n→∞

‖Jxn − Jyn‖ = 0. (3.9)

Therefore, for each p ∈ F, we have

φ(p, xn)− φ(p, yn) = 2〈p, Jyn − Jxn〉+ ‖xn‖2 − ‖yn‖2,
≤ 2‖p‖‖Jyn − Jxn‖+ (‖xn‖ − ‖yn‖)(‖xn‖+ ‖yn‖)
→ 0.

(3.10)
From (3.6), we have

−(1− βn)2a(
2

c2
b− α)‖Axn −Ap‖2 ≤ φ(p, xn)− φ(p, yn).

By (3.10) and lim sup
n→∞

βn < 1, we have

‖Axn −Ap‖ → 0, as n→∞. (3.11)

From lemmas 2.5 and 2.7, and (3.4), for each n ∈ N
⋃
{0}, we have

φ(xn,ΠCun) ≤ φ(xn, un) = φ(xn, J
−1(Jxn − λnAxn))

= V (xn, Jxn − λnAxn)

≤ V (xn, Jxn − λnAxn + λnAxn)

− 2〈J−1(Jxn − λnAxn)− xn, λnAxn〉
= φ(xn, xn) + 2〈un − xn,−λnAxn〉
= 2〈un − xn,−λnAxn〉

≤ 4

c2
λ2
n‖Axn −Ap‖2.

By (3.11), we get

φ(xn,ΠCun)→ 0, as n→∞. (3.12)

Applying lemma 2.3, we obtain from (3.12) that

‖xn −ΠCun‖ → 0, as n→∞. (3.13)
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Since J is uniformly norm-to-norm continuous on bounded sets, we have

‖JΠCun − Jxn‖ → 0, as n→∞. (3.14)

On the other hand, since xn+1 ∈ Cn ⊂ C̄n and tn > 0, there exist m ∈ N,
{λi} ∈ ∆m and {zi}mi=0 ⊂ C such that

‖xn+1−
m∑
i=0

λizi‖<tn and ‖zi−Tzi‖≤ tn‖xn−Txn‖ for all i∈{0, 1, · · · ,m}.

(3.15)
Put r0 = 2 sup

n≥0
‖xn − u‖, where u = ΠFx0. It follows from Lemma 2.6 and

(3.15) that

‖xn+1 − Txn+1‖ ≤ ‖xn+1 −
m∑
i=0

λizi‖+ ‖
m∑
i=0

λi(zi − Tzi)‖

+ ‖
m∑
i=0

λiTzi − T (

m∑
i=0

λizi)‖+ ‖T (

m∑
i=0

λizi)− Txn+1‖

≤ (2 + r0)tn + γ−1
(

max
0≤i<j≤m

(‖zi − zj‖ − ‖Tzi − Tzj‖)
)

≤ (2 + r0)tn + γ−1
(

max
0≤i<j≤m

(‖zi − Tzi‖+ ‖zj − Tzj‖)
)

≤ (2 + r0)tn + γ−1(2r0tn).

This gives us that ‖xn+1 − Txn+1‖ → 0 as n → ∞. Since T is nonexpansive,
T is demiclosed. So, we have that if {xni

} is a subsequence of {xn} such that
xni

⇀ x̂, then x̂ ∈ F (T ).
We next prove x̂ ∈ V I(C,A). from (3.13), we have ΠCun ⇀ x̂. Let S ⊂

E × E∗ be an operator as follows:

Sv =

{
Av +NC(v), v ∈ C,

∅, v∈̄C.

By Theorem 2.8, S is maximal monotone and S−10 = V I(C,A). Let (v, w) ∈
G(S). Since w ∈ Sv = Av+NC(v), we have w−Av ∈ NC(v). From ΠCun ∈ C,
we get

〈v −ΠCun, w −Av〉 ≥ 0. (3.16)

On the other hand, from lemma 2.4, we have 〈v − ΠCun, JΠCun − Jun〉 ≥ 0
and hence

〈v −ΠCun,
Jxn − JΠCun

λn
−Axn〉 ≤ 0. (3.17)
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Then it holds from (3.16) and (3.17) that

〈v −ΠCun, w〉 ≥ 〈v −ΠCun, Av〉

≥ 〈v −ΠCun, Av〉+ 〈v −ΠCun,
Jxn − JΠCun

λn
−Axn〉

= 〈v −ΠCun, Av −Axn〉+ 〈v −ΠCun,
Jxn − JΠCun

λn
〉

= 〈v −ΠCun, Av −AΠCun〉+ 〈v −ΠCun, AΠCun −Axn〉

+ 〈v −ΠCun,
Jxn − JΠCun

λn
〉

≥ −‖v −ΠCun‖
‖ΠCun − xn‖

α
− ‖v −ΠCun‖

‖JΠCun − Jxn‖
a

≥ −M(
‖ΠCun − xn‖

α
+
‖JΠCun − Jxn‖

a
),

for every n ∈ N
⋃
{0}, where M = sup{‖v − ΠCun‖ : n ∈ N

⋃
{0}}. Taking

n = ni, from (3.13) and (3.14), we have 〈v − x̂, w〉 ≥ 0 as i → ∞. By the
maximality of S, we obtain x̂ ∈ S−10 and hence x̂ ∈ V I(C,A). Therefore,
x̂ ∈ F.

Finally, we show that xn → ΠFx0. Let x̃ = ΠFx0. For any n ∈ N, from
xn+1 = ΠCn

⋂
Qn
x0 and x̃ ∈ F ⊂ Cn

⋂
Qn, we have φ(xn+1, x0) ≤ φ(x̃, x0). On

the other hand, from weakly lower semicontinuity of the norm, we have

φ(x̂, x0) = ‖x̂‖2 − 2〈x̂, Jx0〉+ ‖x0‖2
≤ lim inf

i→∞
(‖xni

‖2 − 2〈xni
, Jx0〉+ ‖x0‖2)

= lim inf
i→∞

φ(xni
, x0)

≤ lim sup
i→∞

φ(xni , x0)

≤ φ(x̃, x0).

From the definition of ΠFx0, we obtain x̂ = x̃ and hence, lim
i→∞

φ(xni , x0) =

φ(x̂, x0). So, we have lim
i→∞

‖xni
‖ = ‖x̂‖. Using the K-K property of E, we

obtain xni → ΠFx0. Since xni is an arbitrary convergent subsequence of {xn},
we can conclude that {xn} converges strongly to ΠFx0. �

Corollary 3.2. Let E be a 2-uniformly convex, uniformly smooth Banach
space. Let A be an α−inverse-strongly monotone operator of E into itself and
T be a nonexpansive mapping of E into itself such that F (T )

⋂
A−10 6= ∅.



NONEXPANSIVE AND INVERSE-STRONGLY-MONOTONE MAPPINGS 637

Suppose that the sequence {xn} is defined by

x0 ∈ E chosen arbitrarily,

yn = J−1(βnJxn + (1− βn)(Jxn − λnAxn)),

C̄n = c̄o{z ∈ C : ‖z − Tz‖ ≤ tn‖xn − Txn‖},

C̃n = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},

Cn = C̄n
⋂
C̃n,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn

⋂
Qn
x0,

(3.1)

where {βn} and {tn} satisfy: 0 ≤ βn < 1, and lim sup
n→∞

βn < 1, {tn} ⊂ (0, 1)

and lim
n→∞

tn = 0. If {λn} is chosen so that λn ∈ [a, b] for some a, b with 0 <

a < b < c2α/2, then the sequence {xn} converges strongly to ΠF (T )
⋂
A−10x0,

where 1
c is the 2−uniformly convexity constant of E.

Proof. In Theorem 3.1, we put C = E. By ΠE = I, we have yn = J−1(βnJxn+
(1−βn)(Jxn−λnAxn)) = J−1(βnJxn+(1−βn)JΠE(J−1(Jxn−λnAxn))) for
every n = 0, 1, 2... From Remark 2.2 and Lemma 2.4, We also have V I(E,A) =
A−10 and ‖Ay‖ = ‖Ay − 0‖ = ‖Ay − Au‖ for all y ∈ E and u ∈ A−10. So, by
using Theorem 3.1, {xn} converges strongly to ΠF (T )

⋂
A−10x0. �

Remark 3. In Theorem 4.2 of [5], Iiduka and Takahashi proved the following
conclusion:

Let H be a real Hilbert space. Let A be an α−inverse-strongly monotone
operator of H into itself and T be a nonexpansive mapping of H into itself such
that F (T )

⋂
A−10 6= ∅. Suppose x1 = x ∈ H and {xn} is given by

xn+1 = αnx+ (1− αn)T (xn − λnAxn)

for every n = 1, 2, ..., where {αn} is a sequence in [0, 1) and {λn} is a sequence
in [0, 2α]. If {αn} and {λn} are chosen so that λn ∈ [a, b] for some a, b with
0 < a < b < 2α,

lim
n→∞

αn = 0,

∞∑
n=1

αn =∞,
∞∑
n=1

|αn+1 − αn| <∞ and

∞∑
n=1

|λn+1 − λn| <∞,

then {xn} converges strongly to PF (T )
⋂
A−10x.

Therefore, it’s obvious that Corollary 3.1 generalize the problem of finding
a common element of the set of fixed points of a nonexpansive mapping and
the set of zeros of an inverse-strongly-monotone mapping from Hilbert spaces
to 2-uniformly convex, uniformly smooth Banach spaces without assuming any
additional conditions on operators A and T . Furthermore, these conditions
that 0 ≤ βn < 1, lim sup

n→∞
βn < 1, {tn} ⊂ (0, 1) and lim

n→∞
tn = 0 on con-

trol sequences {βn}, {tn} are easier to implement than these conditions that
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lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞,
∞∑
n=1
|αn+1 − αn| < ∞ and

∞∑
n=1
|λn+1 − λn| < ∞ as-

sumed by Theorem 4.2 of [5]. In addition, in Corollary 3.1, we obtain that
the strong convergence point of {xn} is ΠF (T )

⋂
A−10x0. If E = H, then

ΠF (T )
⋂
A−10x0 = PF (T )

⋂
A−10x0. Hence, this is the same as the convergent

result of Theorem 4.2 of [5].

Corollary 3.3. Let E be a 2-uniformly convex, uniformly smooth Banach
space. Let C be a nonempty, closed convex subset of E. Assume that T is
a nonexpansive mapping from C into itself such that F (T ) 6= ∅. Suppose that
the sequence {xn} is defined by

x0 ∈ C chosen arbitrarily,

C̄n = c̄o{z ∈ C : ‖z − Tz‖ ≤ tn‖xn − Txn‖},
Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠC̄n
⋂
Qn
x0,

(3.1)

where {tn} satisfies: {tn} ⊂ (0, 1) and lim
n→∞

tn = 0. Then the sequence {xn}
converges strongly to ΠF (T )x0.

Proof. Taking A ≡ 0 in Theorem 3.1, we have yn = xn, V I(C,A) = C, C̃n = C
and Cn = C̄n. Then, it is easy to obtain the desired result. �

Corollary 3.4. Let E be a 2-uniformly convex, uniformly smooth Banach
space. Let C be a nonempty, closed convex subset of E. Assume that A is
an operator of C into E∗ that satisfies the conditions (A1) − (A3). The se-
quence {xn} is defined by

x0 ∈ C chosen arbitrarily,

yn = J−1(βnJxn + (1− βn)JΠC(J−1(Jxn − λnAxn))),

Cn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn
⋂
Qn
x0,

(3.1)

where {βn} satisfies: 0 ≤ βn < 1, and lim sup
n→∞

βn < 1. If {λn} is chosen

so that λn ∈ [a, b] for some a, b with 0 < a < b < c2α/2, then the sequence

{xn} converges strongly to ΠV I(C,A)x0, where 1
c is the 2−uniformly convexity

constant of E.

Proof. Taking T = I(the identity mapping) in Theorem 3.1, we have C̄n = C

and Cn = C̃n. Then, it is easy to obtain the desired result. �

Remark 4. Corollary 3.3 generalize theorem 3.1 of [6] from weak convergence
to strong convergence.
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