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STRONG CONVERGENCE THEOREMS
FOR NONEXPANSIVE MAPPINGS AND
INVERSE-STRONGLY-MONOTONE MAPPINGS
IN A BANACH SPACE

YING Liu

ABSTRACT. In this paper, we introduce a new iterative sequence for find-
ing a common element of the set of fixed points of a nonexpansive map-
ping and the set of solutions of the variational inequality for an inverse-
strongly-monotone mapping in a Banach space. Then we show that the
sequence converges strongly to a common element of two sets. Using
this result, we consider the problem of finding a common element of the
set of fixed points of a nonexpansive mapping and the set of zeros of
an inverse-strongly-monotone mapping, the fixed point problem and the
classical variational inequality problem. Our results improve and extend
the corresponding results announced by many others.

1. Introduction

Let E be a real Banach space with norm || - ||, let E* denote the dual of
E and let (x, f) denote the value of f € E* at ¢ € E. Suppose that C is a
nonempty, closed convex subset of F and A is a monotone operator of C' into
FE*. Then we study the problem of finding a point u € C' such that

(v—u,Au) >0 YveC. (1.1)

This problem is called the wvariational inequality problem [8]. The set of so-
lutions of the variational inequality problem is denoted by VI(C, A). Such a
problem is connected with the convex minimization problem, the complemen-
tarity problem, the problem of finding a point v € E satisfying 0 = Au and so
on. An operator A of C into E* is said to be inverse-strongly-monotone [4,7,9]
if there exists a positive real number « such that

(x —y, Az — Ay) > of Az — Ay|?

Received August 16, 2010; Revised October 25, 2010; Accepted November 20, 2010.

2000 Mathematics Subject Classification. 47TH09, 47HO05, 47J25.

Key words and phrases. Nonexpansive mapping,generalized projection, inverse-strongly-
monotone mapping, variational inequality, p-uniformly convex.

This work was financially supported by the Natural Science Youth Foundation of Hebei
Education Commission (No. 2010110) and the Natural Science Youth Foundation of Hebei
Province (No. A2010000191).

(©2010 The Youngnam Mathematical Society
627



628 YING LIU

for all z,y € C. In such a case, A is said to be a—inverse-strongly-monotone. If
A is an a—inverse-strongly-monotone mapping of C' into E*, then it is obvious
that A is é—Lipschitz continuous.

A mapping T of C into F is called nonexpansive if

[Tz =Tyl < |z —yll, v,y el

We denoted by F(T') the set of fixed points of T. In 2005, Iiduka and Taka-
hashi[5] proved strong convergence theorems for finding a common element of
the set of solution of the variational inequality problem for an inverse-strongly-
monotone mapping and the set of fixed points of a nonexpansive mapping in a
Hilbert space. In 2008, Matsushita and Takahashi[10]proved a strong conver-
gence theorem for a nonexpansive mapping 7" in a Banach space by using the
following hybrid method:

Top =X € C,

Cp=co{lzeC:||z—Tz|| <tpl|lzn — Txnl},

D,={z€C:{x, — 2z J(x—2x,)) >0},

Ln41 :PcnﬂDnl',n: 0,1,2,"' s

(1.2)

where Pc, A p, is the metric projection from C into C, () D,, coD denotes
the convex closure of the set D and {¢,} is a sequence in (0,1) with ¢, — 0
as n — oo. Then, they proved that the sequence {z,} converges strongly to
Pr(r)yz. Recently, liduka and Takahashi[6] proved a weak convergence theorem
for finding a solution of the variational inequality problem for an operator A
that satisfies the following conditions in a 2-uniformly convex and uniformly
smooth Banach space F :

(A1) A is a—inverse-strongly-monotone;

(A2) VI(C, A) # 0;

(A3) ||Ay|| < ||Ay — Aul| for all y € C and u € VI(C, A).

Inspired and motivated by these facts, our purpose in this paper is to obtain a
strong convergence theorem for finding a common element of the set of solutions
of a variational inequality problem and the set of fixed points of a nonexpansive
mapping in a Banach space by using the hybrid method. Our results generalize
the results of [5] from Hilbert spaces to Banach spaces. Furthermore, our results
also generalize the result of [6] from weak convergence to strong convergence.

2. Preliminaries

Throughout this paper, we denote by N and R the sets of positive integers
and real numbers, respectively. When {z,} is a sequence in F, we denote
strong convergence of {x,} to x € E by x, — x and weak convergence by
Ty — T.

A multi-valued operator S : E — 2P with domain D(S) = {z € E: Sz #
0} and range R(S) = U{Sz € E* : z € D(S)} is said to be monotone if
(1 — z2,y1 — y2) > 0 for each x; € D(S) and y; € Sx;, i = 1,2. A monotone
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operator S is said to be maximal if its graph G(S) = {(z,y) : y € Sz} is not
properly contained in the graph of any other monotone operator.

Let U ={x € E: ||z|| = 1}. A Banach space E is said to be strictly convex
if for any z,y € U and x # y implies ||%|| < 1. It is also said to be uniformly
convex if for each e € (0,2], there exists § > 0 such that for any z,y € U,
|z —y| > e implies || ££%|| < 1—4. It is known that a uniformly convex Banach
space is reflexive and strictly convex. And we define a function ¢ : [0, 2] — [0, 1]
called the modulus of convexity of E as follows:

r+y

o(e) = inf {1 - |

Then FE is uniformly convex if and only if 6(e) > 0 for all € € (0,2]. Let p be
a fixed real number with p > 2. A Banach space E is said to be p—uniformly
convez if there exists a constant ¢ > 0 such that d(e) > ce? for all € € [0, 2]. For
example, see [3] and [13] for more details. We know the following fundamental
characterization [3,6] of p—uniformly convex Banach spaces:

|2,y €Uz —yll > e}

Lemma 2.1. ([3]) Let p be a real number with p > 2 and let E be a Banach
space. Then E is p—uniformly convex if and only if there exists a constant
0 < c <1 such that

1
Uz +yllP +llz = ylI”) = llz]|” + llyl” (2.1)
forall x,y € E.

The best constant 1/c in Lemma 2.1 is called the p—uniformly convezity

constant of E[3]. Putting z = —(“;”) and y = —(“;”) in (2.1), we readily conclude
that, for all u,v € FE,

1 u+v UuU—0

S Uel” + 1ollP) 2 == 1P + Pl == 11" (2.2)

A Banach space F is said to be smooth if the limit
t —
L ety = el

exists for all z,y € U. It is also said to be uniformly smooth if the limit (2.3)
is attained uniformly for x,y € U. One should note that no Banach space is
p—uniformly convex for 1 < p < 2; see [13] for more details. It is well known
that Hilbert and the Lebesgue LI(1 < ¢ < 2) spaces are 2—uniformly convex,
uniformly smooth.

On the other hand, with each p > 1, the (generalized) duality mapping J,

from E into 27" is defined by
Ip(z) := {v € E*: (z,v) = |lz|]?, |]o]| = [|=|P~'}, Vz € E.

In particular, J = J; is called the normalized duality mapping. If E is a Hilbert
space, then J = I, where I is the identity mapping. The duality mapping J
has the following properties:
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(i) if E is smooth, then J is single-valued;

(ii) if F' is strictly convex, then J is one-to-one;

(iii) if E is reflexive, then J is surjective.

(iv) if E is uniformly smooth, then J is uniformly norm-to-norm continuous
on each bounded subset of E.

Lemma 2.2. ([6]) Let p be a given real number with p > 2 and let E be

a p—uniformly convex Banach space. Then, for all x,y € E,j, € Jpyx and

jy € Jp97
) . cP
(T =Y, Ja — Jy) > T lz —yll,

where J,, is the generalized duality mapping of E and 1/c is the p—uniformly
convexity constant of E.

A Banach space F is said to have the K-K property if a sequence {z,} of F
satisfying that z, — = € E and ||z, || — ||z||, then z,, — x. It is known that
if E' is uniformly convex, then F has the K-K property. Let E be a smooth
Banach space. The function ¢ : E x ' — R is defined by

¢y, x) = lyll* — 2(y, Jz) + ||z|?
for all z,y € E. It is obvious from the definition of the function ¢ that

(lyll = ll=)? < é(y. =) < (lyll + ll=l)* Va,y € E. (2.4)

Remark 1. From Remark 2.1 of [11], we know that ¢(z,y) = 0 if and only if
r=y.

Lemma 2.3. ([11]) Let E be a uniformly conver and smooth Banach space
and let {yn}, {zn} be two sequences of E. If ¢(yn,2n) — 0, and either {y,}, or
{zn} is bounded, then y, — z, — 0.

Let C be a nonempty closed convex subset of E. Suppose that F is reflexive,
strictly convex and smooth. Then, for any z € E, there exists a unique element
o € C such that

¢ (0, x) = min ¢(y, z).
The mapping Il : £ — C defined by llcx = z¢ is called the generalized
projection [2,6,11]. In a Hilbert space, IlI¢ = Pc(metric projection). The
following are well-known results.

Remark 2. From Remark 1, it is easy to see that Il = I.

Lemma 2.4. ([2, 6, 11]) Let C be a nonempty closed convez subset of a smooth
Banach space E and x € E. Then, o = gz if and only if

(xo —y,Jo — Jxg) >0
for ally € C.
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Lemma 2.5. ([2, 6, 11)) Let E be a reflexive, strictly conver and smooth
Banach space, let C' be a nonempty closed convex subset of E and let x € E.
Then

oy, lcx) + o(lcx, x) < ¢(y, x)
for ally € C.

Lemma 2.6. ([10]) Let C be a closed convex subset of a uniformly convex
Banach space. Then for each r > 0, there exists a strictly increasing convex
continuous function v : [0,00) — [0, 00) such that v(0) =0 and

TS Nag) = S ATas ) < mae (o = = [T, = T )
j=0 =0 =i

for alln € N, {\}, € A", {z;}, € C(\ By and T € Lip(C,1), where
A" = {{ho, A1, A2, A} 1 0< N (0<i<n)and > N\i=1}, B, ={z€ E:
i=0

Izl < r} and Lip(C,1) is the set of all nonexpansive mappings from C into E.
Let E be a reflexive, strictly convex, smooth Banach space and let J be the

duality mapping from F into E*. Then J~! is also single-valued, one-to-one,

surjective, and it is the duality mapping from E* into E. We make use of the

following mapping V' studied in Alber [1]:

V(z,2*) = [l]* - 2(z,2") + 2*|? (2.5)

for all z € E and * € E*. In other words, V(z,2*) = ¢(z, J~1(z*)) for all
x € E and * € E*. For each z € E, the mapping g defined by g(z*) = V (z, z*)
for all * € E* is a continuous, convex function from E* into R. We know the
following lemma [1]:

Lemma 2.7. ([1]) Let E be a reflexive, strictly convex, smooth Banach space
and let V be as in (2.5). Then

V(z,z*) +2(J Y (z*) —z,y") < V(z,z* +y*)
forallx € E and x*,y* € E*.

An operator A of C into E* is said to be hemicontinuous if for all z,y € C,
the mapping f of [0, 1] into E* defined by f(t) = A(tz + (1 —t)y) is continuous
with respect to the weak* topology of E*. We denote by N¢(v) the normal
cone for C' at a point v € C, that is,

Ne(w)={z* € E*: (v—y,z") >0 for all y € C}.
We know the following theorem [12]:

Theorem 2.8. (See Rockafellar [12]) Let C' be a nonempty, closed convex
subset of a Banach space E and let A be a monotone, hemicontinuous operator
of C into E*. Let T C E x E*be an operator defined as follows:

[ Av+ N¢(v), vedC,
To= { 0, wec.
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Then T is mazimal monotone and T~0 = VI(C, A).

Lemma 2.9. ([6]) Let C' be a nonempty, closed convex subset of a Banach
space E and let A be a monotone, hemicontinuous operator of C' into E*. Then

VI(C,A) ={ueC:{(v—u,Av) >0 for allv € C}.

It is obvious from Lemma 2.9 that the set VI(C, A) is a closed convex subset
of C.

3. Main results

Theorem 3.1. Let E be a 2-uniformly convez, uniformly smooth Banach space.
Let C be a nonempty, closed convex subset of E. Assume that A is an operator
of C into E* that satisfies the conditions (Al) — (A3). Assume that T is a
nonezpansive mapping from C into itself such that F = F(T)(\VI(C, A) # 0.
The sequence {x,} is defined by

xg € C chosen arbitrarily,
Yn = I (Budan + (1= Bp)JUe(J ™ (Jzn — AAzy))),
Cpn=co{z€C:|z—Tz| <tp|lwn — Tn|},
Cn = {2 € C: ¢(2,yn) < b(2,22)}, (3.1)
Cr = Cp[)Chn,
Qn=1{2€C:{(x,— 2z Jaxg— Jx,) > 0},

Tnt+1 = e, N Q. o,

where {Bp} and {t,} satisfy: 0 < B, < 1, and limsup 3, < 1, {t,} C (0,1)

n—0o0

and lim t, = 0. If {\,} is chosen so that A\, € [a,b] for some a,b with
n— o0

0<a<b<c?a/2, then the sequence {x,} converges strongly to Ilpxg, where

% 18 the 2—uniformly convexity constant of E.

Proof. From the definition of C), and @Q,, it is obvious that Cy, () @y, is closed
and convex for each n € N(J{0}. Next, we show that F C C, (@, for all
n € NU{0}. Put u, = J~1(Jz,, — N\, Az,,) for every n € N |J{0}. Let p € F.
It holds from Lemmas 2.5 and 2.7 that
¢(p7 HCun) < ¢(pa un)
=V(p, Jax, — A\pAxy)
<V(p,(Jz, — \pAz,) + A\ Axy,)
— 2<J_1(an — MAz,) — p, A\ Axy)
=V(p, Jan) — 2\ (un — p, Axy,)
= ¢)(p7 xn) - 2/\n<mn ey 2 Axn> + 2<un — Tn, _)\nAxn>

(3.2)
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for every n € N [J{0}. From the condition(Al) and p € VI(C, A), we have
=2\ (T — p, Axp) = =2\ (xy, — p, Az, — Ap) — 2 (xy, — D, Ap)
< —2\,al| Az, — Ap||?
for every n € N |J{0}. By Lemma 2.2 and the condition(A3), we also have
2ty — Ty, —ApAxy) = 2(T Tz — MAzy) — T T2, — Ay Azy,)
2T (J2n — AAzy) — T Tz ||| A Az |

(3.3)

IN

4
C—QHJIn — MAx, — Jxp||[| A Az, ||

4
= Al Az, |?
C

4
< X2 Ava — Apl*

(3.4)

Therefore, from (3.3), (3.4) and (3.2), we have
2
o(p: cu,) < d(p,zn) + 2(1(;[) —a)|| Az, — ApH2~ (3.5)

Then, by the convexity of || - ||? and (3.5), we have

P, yn) = IpII*> = 2(p, BuJ s + (1 — Bn) T cuy)
+ 1Bndzn + (1 = Bp) JHcun |2
<|lpll* = 280 (p, Jn) — 2(1 = Bn)(p, Jcun) + Bullza|?
+ (1= 8,) Mo, |? (3.6)
= Bnd(p,zn) + (1 — Br)d(p, cun)

< 0lp,a) + (1= 5)20( 50— )] Az, — Apl?
< o(pyzn).

Thus, we have p € C,,. Tt is obvious that p € C,,. Therefore we obtain F C C,,
for each n € N [J{0}. Using the same argument presented in the proof of [11,
Theorem 3.1;pp.261-262] we have F' C C,, () Qy for each n € N|J{0}. This
implies that {x,} is well defined. It follows from the definition of @, and
lemma 2.4 that z,, = Ilg, 2. Using =, = Ilg, z¢ and lemma 2.5, we have

¢(xn, 20) < G(p,20) = ¢(p, 20) < G(p, 70)

for each p € F C @, for each n € N |J{0}. Therefore, ¢(x,, o) is bounded.
Moreover, from (2.4), we have that {z,} is bounded.

Since z,41 = ¢, N0, 20 € Qn, and z, = Ilg, 2o, Wwe have ¢(z,,r0) <
¢(Tpt1,20) for each n € N|J{0}. Therefore, {¢(zn,x0)} is nondecreasing. So
there exists the limit of ¢(z,, zo). From the lemma 2.5, we have

O(Tnt1,Tn) < O(Xnt1,Zo) — O(Tn, To)



634 YING LIU

for each n € N|J{0}. This implies that lim ¢(zp41,2,) = 0. Since zp41 =
n—oo
e, g, 7o € Cp C Oy, from the definition of C,,, we also have
¢($n+1, yn) < ¢($n+17 xn)
for each n € N|J{0}. Tending n — oo, we have lim ¢(xn41,y,) = 0. Using
n—oo
lemma 2.3, we obtain
nlggo [Znt1 = ynll = nlggo [#n41 — 2al| = 0. (3.7)
From [|zn — ynl| < [len — Zniall + |Zns1 — ynll, we have
lzn — ynll = 0, (n — 00). (3.8)
Since J is uniformly norm-to-norm continuous on bounded sets, we have
nh_)rr;o lJznt1 — Jynl = nh—>Holo |Jznt1 — Jznl = nh_}rrolo |Jzn — Jyn| = 0. (3.9)

Therefore, for each p € F, we have

o(p, xn) — &P yn) = 2(p, Jyn — Ja0) + HanQ - Hynsz
<2[|plllJyn — Jzn|l + (2ol = l[ynl) (znll + [lynl)

— 0.
(3.10)
From (3.6), we have
2
7(1 - ﬂn)za(gb - Oé)HAIn - AAPH2 < ¢(p7 xn) - ¢(pa yn)'
By (3.10) and limsup §,, < 1, we have
n—oo
Az, — Ap|| = 0, asn — oo. (3.11)
From lemmas 2.5 and 2.7, and (3.4), for each n € N [J{0}, we have
(b(xn, HCUn) < d)(zna Un) = ¢(xn7 Jﬁl(Jzn - /\nAzn))
=V(xpn, Jrn — AAzy,)
< V(xn, Jr, — MpAx, + A\ Axy,)
—2(J N Jxy — AMAxy) — 2, My Ay
= d)(xn, wn) + 2<un — Tn, *)\nAxn>
= 2{uy — Tp, —AnAzy)
4
< S Avn - AplP.
By (3.11), we get
¢(zn, Mou,) -0, asn — oo. (3.12)

Applying lemma 2.3, we obtain from (3.12) that

lzn, — Houyl = 0, asn — cc. (3.13)
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Since J is uniformly norm-to-norm continuous on bounded sets, we have
lJOcuy, — Jz,|| = 0, asn — oo. (3.14)

On the other hand, since z,,1 € C,, C C,, and t, > 0, there exist m € N,
{Ai} € A™ and {z;}*, C C such that

||xn+1—z Xizil| <tn and ||z;—Tz|| <tp||lxn—Tz,| for all i€{0,1,---,m}.
=0
(3.15)
Put 7o = 2sup ||z, — u||, where u = IIpzg. It follows from Lemma 2.6 and
n>0

(3.15) that

m m
|Zns1 = Tl < lomgr = D Nzl + 1D Az — Tz)
i=0 1=0

F DY ATz =T Xz + 1T Xizi) = T
1=0 1=0 =0

< @ ot +97(max (e — 2| - T2 - T21)

< @40t +77( max (e = Taill + 125 = T21)

< (24 7ro)ty + 771(2r0tn).

This gives us that ||z,+1 — T@nt1|| = 0 as n — oo. Since T' is nonexpansive,
T is demiclosed. So, we have that if {z,,} is a subsequence of {x,} such that
Tn, — &, then & € F(T).

We next prove & € VI(C,A). from (3.13), we have IIcu, — 2. Let S C
E x E* be an operator as follows:

[ Av+ N¢(v), veC,
v = { 0, wec.

By Theorem 2.8, S is maximal monotone and S™10 = VI(C, A). Let (v,w) €

G(S). Since w € Sv = Av+ N¢(v), we have w— Av € N (v). From Ieu, € C,
we get

(v —Meouy,, w — Av) > 0. (3.16)

On the other hand, from lemma 2.4, we have (v — Houy,, Jllou, — Ju,) >0
and hence
Jx, — Jllcu,

5 — Az,) <0. (3.17)

(v —Iouy,
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Then it holds from (3.16) and (3.17) that

(v — Moy, w) > (v —Meuy,, Av)
Jx, — Jllcu,

> (v — ey, Av) + (v — Houy, 5

— Axy,)

Jl‘n — Jﬂcun
— )

= (v — Heuy, Av — Allguy) + (v — Houy, Allou, — Az,)
Jz, — Jllcu,
—a )
| Moun — 2| _

= (v — Heuy, Av — Az,) + (v — Houy,

+ (v — ey,

1 Moun = Jza|
a

%

—Jlo — M| o - T,

IMew, — zy|| n lTOcuy, — Jz,||

_M( )7

« a

for every n € N |J{0}, where M = sup{|jv — IIcu,| : n € N{J{0}}. Taking
n = n;, from (3.13) and (3.14), we have (v — Z,w) > 0 as i — oo. By the
maximality of S, we obtain # € S7!0 and hence & € VI(C, A). Therefore,
zerl

Finally, we show that x,, — Ipzo. Let & = [Ipxq. For any n € N, from
Tny1 = e, ng, %0 and & € F' C Cy, () Qn, we have ¢(xp41,20) < ¢(Z,20). On
the other hand, from weakly lower semicontinuity of the norm, we have

(2, z0) |2]|* = 2(&, Jzo) + ||zo|?

IA I

lim inf (|12, |* = 2(@n. Jzo) + |lzol|*)
71— 00

< lim sup ¢(xni7x0)
i—~)oo

< ¢('r’ 330)~

From the definition of IIpxg, we obtain & = & and hence, lim ¢(zn,,zo) =
71— 00
(&, x9). So, we have lim ||z,,| = ||Z||. Using the K-K property of E, we
1— 00

obtain z,, — I pxg. Since z,,, is an arbitrary convergent subsequence of {x,,},
we can conclude that {z,} converges strongly to Ilpzg. O

Corollary 3.2. Let E be a 2-uniformly convex, uniformly smooth Banach
space. Let A be an a—inverse-strongly monotone operator of E into itself and
T be a nonexpansive mapping of E into itself such that F(T)(A~'0 # 0.
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Suppose that the sequence {x,} is defined by
xg € E  chosen arbitrarily,
Yo = T (BT + (1= Bu) (T — AnAz,),
Chn=co{lzcC:|z—Tz|| <tp|lry — Tx,|},
w={2€C:¢(z,yn) < d(z,20)}, (3.1)
Cn=Crn[Cn,
Qn=1{2€C:{xy— 2z, Jxg— Jx,) > 0},

ZTn+1 = e, N g, Tos

where {Bn} and {t,} satisfy: 0 < B, < 1, and limsup B, < 1, {t,} C (0,1)

n— oo

and li_>m tn, = 0. If {\,} is chosen so that \, € [a,b] for some a,b with 0 <

a <b< Paf2, then the sequence {x,} converges strongly to ILpry) A a-10%0,

where % is the 2—uniformly convexity constant of E.

Proof. In Theorem 3.1, we put C = E. By Ilg = I, we have y,, = J (B, Jx, +
(1= Bn)(Jzn — AnAz,)) = T 1 (BuJxn+ (1= Bn) JUg(J~H(Jz, — Ay Azy,))) for
every n =0, 1,2... From Remark 2.2 and Lemma 2.4, We also have VI(E, A) =
A0 and ||Ay| = ||Ay — 0|| = ||Ay — Aul| for all y € E and u € A~10. So, by
using Theorem 3.1, {x,,} converges strongly to Il i1y a-10%0- O

Remark 3. In Theorem 4.2 of [5], liduka and Takahashi proved the following
conclusion:

Let H be a real Hilbert space. Let A be an a—inverse-strongly monotone
operator of H into itself and 7" be a nonexpansive mapping of H into itself such

that F(T)( A~10 # 0. Suppose #1 =z € H and {x,} is given by
Tnt1 = anZ + (1 — )T (zn — A\pAzy)

for every n = 1,2, ..., where {«, } is a sequence in [0,1) and {\,} is a sequence
in [0,2a]. If {a,} and {\,} are chosen so that A, € [a,b] for some a,b with
0<a<b<2q

o0 o0 o0

lim «, =0, g Q, = 00, g |antr1 — ap| < 0o and E [Ant1 — An| < o0,
—

nee n=1 n=1 n=1

then {z,} converges strongly to Ppryna-102-

Therefore, it’s obvious that Corollary 3.1 generalize the problem of finding
a common element of the set of fixed points of a nonexpansive mapping and
the set of zeros of an inverse-strongly-monotone mapping from Hilbert spaces
to 2-uniformly convex, uniformly smooth Banach spaces without assuming any
additional conditions on operators A and 7. Furthermore, these conditions
that 0 < 68, < 1, limsupfB, < 1, {t,} C (0,1) and nan;Otn = 0 on con-

n—roo
trol sequences {3,}, {t,} are easier to implement than these conditions that
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n—oo

lim o, =0, Zan 00, Z |tnt1 — an| < 0o and Z [Ang1 — An| < 00 as-
=1

sumed by Theorem 42 of [5 [ ] In addition, in Corollary 3.1, we obtain that
the strong convergence point of {z,} is pr)na-10%0- If E = H, then
Opryna-10ro = Priryna-10%o. Hence, this is the same as the convergent
result of Theorem 4.2 of [5].

Corollary 3.3. Let E be a 2-uniformly convex, uniformly smooth Banach
space. Let C' be a nonempty, closed convexr subset of E. Assume that T is
a nonezpansive mapping from C into itself such that F(T) # 0. Suppose that
the sequence {x,} is defined by

xg € C chosen arbitrarily,
Cp=co{z€C:|z—Tz| <tullzn — Tz, ]},
Qn={2€C:{x,— 2z Jxg— Jx,) > 0},
o1 = I, n g, %o,
where {t,} satisfies: {t,} C (0,1) and nl;rréo t, = 0. Then the sequence {z,}

converges strongly to IIpryzo.

(3.1)

Proof. Taking A = 0 in Theorem 3.1, we have y, = z,,, VI(C, A) = C, C,=C
and C,, = C,. Then, it is easy to obtain the desired result. O

Corollary 3.4. Let E be a 2-uniformly convex, uniformly smooth Banach
space. Let C be a nonempty, closed conver subset of . Assume that A is
an operator of C into E* that satisfies the conditions (Al) — (A3). The se-
quence {x,} is defined by

xg € C chosen arbitrarily,
Yo = I Budwn + (1= Bn) e (T (Jzn — AnAzn))),
Cn ={2€C:8(z,yn) < d(z,2n)}, (3.1)
Qn={2€C:{(xy,— 2z Jxg— Ja,) >0},
Tny1 = e, 0, %o,

where {B,} satisfies: 0 < B, < 1, and limsup B, < 1. If {\,} is chosen

n—oo
so that N, € [a,b] for some a,b with 0 < a < b < c®a/2, then the sequence
1

{xn} converges strongly to Iy (¢, ayTo, where % is the 2—uniformly convewity
constant of E.

Proof. Taking T' = I(the identity mapping) in Theorem 3.1, we have C,, = C
and C,, = C),. Then, it is easy to obtain the desired result. [l

Remark 4. Corollary 3.3 generalize theorem 3.1 of [6] from weak convergence
to strong convergence.
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