• Title/Summary/Keyword: inverse learning

Search Result 205, Processing Time 0.025 seconds

A study on the student's question about the existence of the inverse function for the task that connects the two correspondence relations (두 대응관계를 연결한 과제에 대하여 역함수 존재 여부에 대한 학생의 질문에 관한 소고)

  • Lee, Dong Gun
    • The Mathematical Education
    • /
    • v.58 no.2
    • /
    • pp.239-262
    • /
    • 2019
  • This study deals with the anxieties that originated from specific student questions. Through the analysis of the textbooks, we confirmed that the question was a sufficiently plausible question. Third interviews were also held with three high school students. Through the interviews, we analyzed students' expressions about the new correspondence relationship that the two correspondence relations are linked. In the determination of the composite function and the determination of the inverse function existence, We have observed a case of how the worries about domain are being reconstructed from students into meaningful mathematical knowledge. Through this, we confirmed that the question will be confusing to students in the field. In this study, we observed the transfer of domain in relation to student domain in composite function. In particular, a present study revealed that the students involved in the interview were influenced by this domain transfer phenomenon in determining whether the task given in the interview was a function. This was the same in determining the existence of a inverse function. The examples presented in this study are limited to specific cases in limited circumstances. Therefore, it can not be applied directly to teaching and learning situations. However, it is expected that this study will provide other researchers with insight into function learning related research.

A Learning Controller for Gate Control of Biped Walking Robot using Fourier Series Approximation

  • Lim, Dong-cheol;Kuc, Tae-yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.85.4-85
    • /
    • 2001
  • A learning controller is presented for repetitive walking motion of biped robot. The learning control scheme learns the approximate inverse dynamics input of biped walking robot and uses the learned input pattern to generate an input profile of different walking motion from that learnt. In the learning controller, the PID feedback controller takes part in stabilizing the transient response of robot dynamics while the feedforward learning controller plays a role in computing the desired actuator torques for feedforward nonlinear dynamics compensation in steady state. It is shown that all the error signals in the learning control system are bounded and the robot motion trajectory converges to the desired one asymptotically. The proposed learning control scheme is ...

  • PDF

A Study on the Inverse Calibration of Industrial Robot Using Neural Networks (신경회로망을 이용한 산업용 로봇의 역보정에 관한연구)

  • 서운학
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.108-115
    • /
    • 1999
  • This paper proposes the robot inverse calibration method using a neural networks. A highorder networks called Pi-Sigma networks has been used. The Pi-Sigma networks uses linear summing units in the hidden layer and product unit in output layer. The inverse calibration model which compensates the difference of joint variables only between measuring value and analytic value about the desired pose(position orientation) of a robot is proposed. The compensated values are determined by using the weights obtained from the learning process of the neural networks previously. To prove the reasonableness the SCARA type direct drive robot(4-DOF) and anthropomorphic robot(6-DOF) are simulated. It shows that the proposed calibration method can reduce the errors of the joint variables from $\pm$3 to $\pm$0.1.

  • PDF

Neurocontrol architecture for the dynamic control of a robot arm (로보트 팔의 동력학적제어를 위한 신경제어구조)

  • 문영주;오세영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.280-285
    • /
    • 1991
  • Neural network control has many innovative potentials for fast, accurate and intelligent adaptive control. In this paper, a learning control architecture for the dynamic control of a robot manipulator is developed using inverse dynamic neurocontroller and linear neurocontroher. The inverse dynamic neurocontrouer consists of a MLP (multi-layer perceptron) and the linear neurocontroller consists of SLPs (single layer perceptron). Compared with the previous type of neurocontroller which is using an inverse dynamic neurocontroller and a fixed PD gain controller, proposed architecture shows the superior performance over the previous type of neurocontroller because linear neurocontroller can adapt its gain according to the applied task. This superior performance is tested and verified through the control of PUMA 560. Without any knowledge on the dynamic model, its parameters of a robot , (The robot is treated as a complete black box), the neurocontroller, through practice, gradually and implicitly learns the robot's dynamic properties which is essential for fast and accurate control.

  • PDF

Inverse Calibration of a Robot Manipulator Using Neural Network (뉴럴 네트워크를 이용한 로봇 매니퓰레이터의 역보정)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.199-204
    • /
    • 1999
  • The robot inverse calibration method using a neural networks is proposed in this paper. A high-order networks has been used in this study. The Pi-Sigma networks uses linear summing units in the hidden layer and product unit in output layer. The inverse calibration model which compensates the difference of joint variables only between measuring value and analytic value about the desired pose(position orientation) of a robot is proposed. The compensated values are determined by using the weights obtained from the learning process of the neural networks previously. To prove the reasonableness, the selected compliance automatic robot arm type direct drive robot and anthropomorphic robot are simulated. It shows that the proposed calibration method can reduce the errors of the joint variables from ${\pm}$0.15$^{\circ}$to ${\pm}$0.12$^{\circ}$.

  • PDF

A Study on Inverse Kinematics Based Posture and Motion Generation System for Sports Climbing (역운동학 기반 스포츠클라이밍 자세 및 동작 생성 시스템에 관한 연구)

  • Shin, Kyucheol;Son, JongHee;Kim, Dongho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.5
    • /
    • pp.243-250
    • /
    • 2016
  • Recently, public interest in virtual reality (VR) and augmented reality (AR) has increased. Therefore, computer graphics-related research has been actively conducted. This has included research on virtual space related to human posture implementation. However, such research has focused on general posture in humans. This paper presents a system with reference to the basic posture in sports climbing and the inverse kinematics method for generating the positions and behavior of virtual characteristics in a three-dimensional virtual space. The simulation based on the inverse kinematics method, produced with an inverse kinematics solver and initial pose animation from motion capture, provides realistic and natural movement. We designed a simulation system to generate correct posture and motions similar to those in sports climbing by applying the basic procedure of sports climbing. The simulation system provides help for producing content about sports climbing, such as learning programs for novice climbers and sports climbing games.

Implementation of Hybrid Neural Network for Improving Learning ability and Its Application to Visual Tracking Control (학습 성능의 개선을 위한 복합형 신경회로망의 구현과 이의 시각 추적 제어에의 적용)

  • 김경민;박중조;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1652-1662
    • /
    • 1995
  • In this paper, a hybrid neural network is proposed to improve the learning ability of a neural network. The union of the characteristics of a Self-Organizing Neural Network model and of multi-layer perceptron model using the backpropagation learning method gives us the advantage of reduction of the learning error and the learning time. In learning process, the proposed hybrid neural network reduces the number of nodes in hidden layers to reduce the calculation time. And this proposed neural network uses the fuzzy feedback values, when it updates the responding region of each node in the hidden layer. To show the effectiveness of this proposed hybrid neural network, the boolean function(XOR, 3Bit Parity) and the solution of inverse kinematics are used. Finally, this proposed hybrid neural network is applied to the visual tracking control of a PUMA560 robot, and the result data is presented.

  • PDF

Extraction of the OLED Device Parameter based on Randomly Generated Monte Carlo Simulation with Deep Learning (무작위 생성 심층신경망 기반 유기발광다이오드 흑점 성장가속 전산모사를 통한 소자 변수 추출)

  • You, Seung Yeol;Park, Il-Hoo;Kim, Gyu-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.131-135
    • /
    • 2021
  • Numbers of studies related to optimization of design of organic light emitting diodes(OLED) through machine learning are increasing. We propose the generative method of the image to assess the performance of the device combining with machine learning technique. Principle parameter regarding dark spot growth mechanism of the OLED can be the key factor to determine the long-time performance. Captured images from actual device and randomly generated images at specific time and initial pinhole state are fed into the deep neural network system. The simulation reinforced by the machine learning technique can predict the device parameters accurately and faster. Similarly, the inverse design using multiple layer perceptron(MLP) system can infer the initial degradation factors at manufacturing with given device parameter to feedback the design of manufacturing process.

Improving Levenberg-Marquardt algorithm using the principal submatrix of Jacobian matrix (Jacobian 행렬의 주부분 행렬을 이용한 Levenberg-Marquardt 알고리즘의 개선)

  • Kwak, Young-Tae;Shin, Jung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.8
    • /
    • pp.11-18
    • /
    • 2009
  • This paper proposes the way of improving learning speed in Levenberg-Marquardt algorithm using the principal submatrix of Jacobian matrix. The Levenberg-Marquardt learning uses Jacobian matrix for Hessian matrix to get the second derivative of an error function. To make the Jacobian matrix an invertible matrix. the Levenberg-Marquardt learning must increase or decrease ${\mu}$ and recalculate the inverse matrix of the Jacobian matrix due to these changes of ${\mu}$. Therefore, to have the proper ${\mu}$, we create the principal submatrix of Jacobian matrix and set the ${\mu}$ as the eigenvalues sum of the principal submatrix. which can make learning speed improve without calculating an additional inverse matrix. We also showed that our method was able to improve learning speed in both a generalized XOR problem and a handwritten digit recognition problem.

AMN controller for dynamic control of robot manpulators (로봇 머니퓰레이터의 동력학 제어를 위한 AMN제어기)

  • 정재욱;국태용;이택종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1569-1572
    • /
    • 1997
  • In this paper, we present an associative memory network (AMN) controller for dynamic robot control. The purpose of using AMN is to reduce the size of required memory in storing and recalling large of daa representing input relationship of nonlinear functions. With the capability AMN can be used to dynamic robot control, which has nonlinear properties inherently. The proposed AMN control scheme has advantages for the inverse dynamics learning no limitatiion of inpur range, and insensitive of payload change. Computer simulations show the effectiveness and feasibility of proposed scheme.

  • PDF