• Title/Summary/Keyword: inverse learning

Search Result 205, Processing Time 0.025 seconds

Application of Text-Classification Based Machine Learning in Predicting Psychiatric Diagnosis (텍스트 분류 기반 기계학습의 정신과 진단 예측 적용)

  • Pak, Doohyun;Hwang, Mingyu;Lee, Minji;Woo, Sung-Il;Hahn, Sang-Woo;Lee, Yeon Jung;Hwang, Jaeuk
    • Korean Journal of Biological Psychiatry
    • /
    • v.27 no.1
    • /
    • pp.18-26
    • /
    • 2020
  • Objectives The aim was to find effective vectorization and classification models to predict a psychiatric diagnosis from text-based medical records. Methods Electronic medical records (n = 494) of present illness were collected retrospectively in inpatient admission notes with three diagnoses of major depressive disorder, type 1 bipolar disorder, and schizophrenia. Data were split into 400 training data and 94 independent validation data. Data were vectorized by two different models such as term frequency-inverse document frequency (TF-IDF) and Doc2vec. Machine learning models for classification including stochastic gradient descent, logistic regression, support vector classification, and deep learning (DL) were applied to predict three psychiatric diagnoses. Five-fold cross-validation was used to find an effective model. Metrics such as accuracy, precision, recall, and F1-score were measured for comparison between the models. Results Five-fold cross-validation in training data showed DL model with Doc2vec was the most effective model to predict the diagnosis (accuracy = 0.87, F1-score = 0.87). However, these metrics have been reduced in independent test data set with final working DL models (accuracy = 0.79, F1-score = 0.79), while the model of logistic regression and support vector machine with Doc2vec showed slightly better performance (accuracy = 0.80, F1-score = 0.80) than the DL models with Doc2vec and others with TF-IDF. Conclusions The current results suggest that the vectorization may have more impact on the performance of classification than the machine learning model. However, data set had a number of limitations including small sample size, imbalance among the category, and its generalizability. With this regard, the need for research with multi-sites and large samples is suggested to improve the machine learning models.

Hybrid Machine Learning Model for Predicting the Direction of KOSPI Securities (코스피 방향 예측을 위한 하이브리드 머신러닝 모델)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.6
    • /
    • pp.9-16
    • /
    • 2021
  • In the past, there have been various studies on predicting the stock market by machine learning techniques using stock price data and financial big data. As stock index ETFs that can be traded through HTS and MTS are created, research on predicting stock indices has recently attracted attention. In this paper, machine learning models for KOSPI's up and down predictions are implemented separately. These models are optimized through a grid search of their control parameters. In addition, a hybrid machine learning model that combines individual models is proposed to improve the precision and increase the ETF trading return. The performance of the predictiion models is evaluated by the accuracy and the precision that determines the ETF trading return. The accuracy and precision of the hybrid up prediction model are 72.1 % and 63.8 %, and those of the down prediction model are 79.8% and 64.3%. The precision of the hybrid down prediction model is improved by at least 14.3 % and at most 20.5 %. The hybrid up and down prediction models show an ETF trading return of 10.49%, and 25.91%, respectively. Trading inverse×2 and leverage ETF can increase the return by 1.5 to 2 times. Further research on a down prediction machine learning model is expected to increase the rate of return.

A study for improvement of far-distance performance of a tunnel accident detection system by using an inverse perspective transformation (역 원근변환 기법을 이용한 터널 영상유고시스템의 원거리 감지 성능 향상에 관한 연구)

  • Lee, Kyu Beom;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.247-262
    • /
    • 2022
  • In domestic tunnels, it is mandatory to install CCTVs in tunnels longer than 200 m which are also recommended by installation of a CCTV-based automatic accident detection system. In general, the CCTVs in the tunnel are installed at a low height as well as near by the moving vehicles due to the spatial limitation of tunnel structure, so a severe perspective effect takes place in the distance of installed CCTV and moving vehicles. Because of this effect, conventional CCTV-based accident detection systems in tunnel are known in general to be very hard to achieve the performance in detection of unexpected accidents such as stop or reversely moving vehicles, person on the road and fires, especially far from 100 m. Therefore, in this study, the region of interest is set up and a new concept of inverse perspective transformation technique is introduced. Since moving vehicles in the transformed image is enlarged proportionally to the distance from CCTV, it is possible to achieve consistency in object detection and identification of actual speed of moving vehicles in distance. To show this aspect, two datasets in the same conditions are composed with the original and the transformed images of CCTV in tunnel, respectively. A comparison of variation of appearance speed and size of moving vehicles in distance are made. Then, the performances of the object detection in distance are compared with respect to the both trained deep-learning models. As a result, the model case with the transformed images are able to achieve consistent performance in object and accident detections in distance even by 200 m.

Artifact Reduction in Sparse-view Computed Tomography Image using Residual Learning Combined with Wavelet Transformation (Wavelet 변환과 결합한 잔차 학습을 이용한 희박뷰 전산화단층영상의 인공물 감소)

  • Lee, Seungwan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.295-302
    • /
    • 2022
  • Sparse-view computed tomography (CT) imaging technique is able to reduce radiation dose, ensure the uniformity of image characteristics among projections and suppress noise. However, the reconstructed images obtained by the sparse-view CT imaging technique suffer from severe artifacts, resulting in the distortion of image quality and internal structures. In this study, we proposed a convolutional neural network (CNN) with wavelet transformation and residual learning for reducing artifacts in sparse-view CT image, and the performance of the trained model was quantitatively analyzed. The CNN consisted of wavelet transformation, convolutional and inverse wavelet transformation layers, and input and output images were configured as sparse-view CT images and residual images, respectively. For training the CNN, the loss function was calculated by using mean squared error (MSE), and the Adam function was used as an optimizer. Result images were obtained by subtracting the residual images, which were predicted by the trained model, from sparse-view CT images. The quantitative accuracy of the result images were measured in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The results showed that the trained model is able to improve the spatial resolution of the result images as well as reduce artifacts in sparse-view CT images effectively. Also, the trained model increased the PSNR and SSIM by 8.18% and 19.71% in comparison to the imaging model trained without wavelet transformation and residual learning, respectively. Therefore, the imaging model proposed in this study can restore the image quality of sparse-view CT image by reducing artifacts, improving spatial resolution and quantitative accuracy.

Deep Learning based Estimation of Depth to Bearing Layer from In-situ Data (딥러닝 기반 국내 지반의 지지층 깊이 예측)

  • Jang, Young-Eun;Jung, Jaeho;Han, Jin-Tae;Yu, Yonggyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.35-42
    • /
    • 2022
  • The N-value from the Standard Penetration Test (SPT), which is one of the representative in-situ test, is an important index that provides basic geological information and the depth of the bearing layer for the design of geotechnical structures. In the aspect of time and cost-effectiveness, there is a need to carry out a representative sampling test. However, the various variability and uncertainty are existing in the soil layer, so it is difficult to grasp the characteristics of the entire field from the limited test results. Thus the spatial interpolation techniques such as Kriging and IDW (inverse distance weighted) have been used for predicting unknown point from existing data. Recently, in order to increase the accuracy of interpolation results, studies that combine the geotechnics and deep learning method have been conducted. In this study, based on the SPT results of about 22,000 holes of ground survey, a comparative study was conducted to predict the depth of the bearing layer using deep learning methods and IDW. The average error among the prediction results of the bearing layer of each analysis model was 3.01 m for IDW, 3.22 m and 2.46 m for fully connected network and PointNet, respectively. The standard deviation was 3.99 for IDW, 3.95 and 3.54 for fully connected network and PointNet. As a result, the point net deep learing algorithm showed improved results compared to IDW and other deep learning method.

Development of Collaborative Robot Control Training Medium to Improve Worker Safety and Work Convenience Using Image Processing and Machine Learning-Based Hand Signal Recognition (작업자의 안전과 작업 편리성 향상을 위한 영상처리 및 기계학습 기반 수신호 인식 협동로봇 제어 교육 매체 개발)

  • Jin-heork Jung;Hun Jeong;Gyeong-geun Park;Gi-ju Lee;Hee-seok Park;Chae-hun An
    • Journal of Practical Engineering Education
    • /
    • v.14 no.3
    • /
    • pp.543-553
    • /
    • 2022
  • A collaborative robot(Cobot) is one of the production systems presented in the 4th industrial revolution and are systems that can maximize efficiency by combining the exquisite hand skills of workers and the ability of simple repetitive tasks of robots. Also, research on the development of an efficient interface method between the worker and the robot is continuously progressing along with the solution to the safety problem arising from the sharing of the workspace. In this study, a method for controlling the robot by recognizing the worker's hand signal was presented to enhance the convenience and concentration of the worker, and the safety of the worker was secured by introducing the concept of a safety zone. Various technologies such as robot control, PLC, image processing, machine learning, and ROS were used to implement this. In addition, the roles and interface methods of the proposed technologies were defined and presented for using educational media. Students can build and adjust the educational media system by linking the introduced various technologies. Therefore, there is an excellent advantage in recognizing the necessity of the technology required in the field and inducing in-depth learning about it. In addition, presenting a problem and then seeking a way to solve it on their own can lead to self-directed learning. Through this, students can learn key technologies of the 4th industrial revolution and improve their ability to solve various problems.

The Intelligent Control System for Biped Robot Using Hierarchical Mixture of Experts (계층적 모듈라 신경망을 이용한 이동로봇 지능제어기)

  • Choi Woo-Kyung;Ha Sang-Hyung;Kim Seong-Joo;Kim Yong-Taek;Jeon Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.389-395
    • /
    • 2006
  • This paper proposes the controller for biped robot using intelligent control algorithm. In order to simplify the complexity of biped robot control, manipulator of biped robot is divided into four modules. These modules are controlled by intelligent algorithm with Hierarchical Mixture of Experts(HME) using neural network. Also neural network having direct control method learns the inverse dynamics of biped robot. The HME, which is a network of tree structure, reallocates the input domain for the output by learning pattern of input and output. In this paper, as a result of learning HME repeatedly with EM algorithm, the controller for biped robot operating safety walking is designed by modelling dynamics of biped robot and generating virtual error of HME.

MIMO Fuzzy Reasoning Method using Learning Ability (학습기능을 사용한 MIMO 퍼지추론 방식)

  • Park, Jin-Hyun;Lee, Tae-Hwan;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.175-178
    • /
    • 2008
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. But the most of fuzzy systems are difficult to make fuzzy inference rules in the case of MIMO system. The past days, We had proposed the MIMO fuzzy inference which had extended a Z. Cao's fuzzy inference to handle MIMO system. But many times and effort needed to determine the relation matrix elements of MIMO fuzzy inference by heuristic and trial and error method in order to improve inference performances. In this paper, we propose a MIMO fuzzy inference method with the learning ability witch is used a gradient descent method in order to improve the performances. Through the computer simulation studies for the inverse kinematics problem of 2-axis robot, we show that proposed inference method using a gradient descent method has good performances.

  • PDF

A Study on an Inductive Motion Edit Methodology using a Uniform Posture Map (균등 자세 지도를 이용한 귀납적 동작 편집 기법에 관한 연구)

  • 이범로;정진현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2C
    • /
    • pp.162-171
    • /
    • 2003
  • It is difficult to reuse the captured motion data, because the data has a difficulty in editing it. In this paper, a uniform posture mar (UPM) algorithm, one of unsupervised learning neural network is proposed to edit the captured motion data. Because it needs much less computational cost than other motion editing algorithms, it is adequate to apply in teal-time applications. The UPM algorithm prevents from generating an unreal posture in learning phase. It not only makes more realistic motion curves, but also contributes to making more natural motions. Above of all, it complements the weakness of the existing algorithm where the calculation quantity increases in proportion to increase the number of restricted condition to solve the problems of high order articulated body. In this paper, it is shown two applications as a visible the application instance of UPM algorithm. One is a motion transition editing system, the other is a inductive inverse kinematics system. This method could be applied to produce 3D character animation based on key frame method, 3D game, and virtual reality, etc.

Acoustic Full-waveform Inversion using Adam Optimizer (Adam Optimizer를 이용한 음향매질 탄성파 완전파형역산)

  • Kim, Sooyoon;Chung, Wookeen;Shin, Sungryul
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.202-209
    • /
    • 2019
  • In this study, an acoustic full-waveform inversion using Adam optimizer was proposed. The steepest descent method, which is commonly used for the optimization of seismic waveform inversion, is fast and easy to apply, but the inverse problem does not converge correctly. Various optimization methods suggested as alternative solutions require large calculation time though they were much more accurate than the steepest descent method. The Adam optimizer is widely used in deep learning for the optimization of learning model. It is considered as one of the most effective optimization method for diverse models. Thus, we proposed seismic full-waveform inversion algorithm using the Adam optimizer for fast and accurate convergence. To prove the performance of the suggested inversion algorithm, we compared the updated P-wave velocity model obtained using the Adam optimizer with the inversion results from the steepest descent method. As a result, we confirmed that the proposed algorithm can provide fast error convergence and precise inversion results.