Abstract
It is difficult to reuse the captured motion data, because the data has a difficulty in editing it. In this paper, a uniform posture mar (UPM) algorithm, one of unsupervised learning neural network is proposed to edit the captured motion data. Because it needs much less computational cost than other motion editing algorithms, it is adequate to apply in teal-time applications. The UPM algorithm prevents from generating an unreal posture in learning phase. It not only makes more realistic motion curves, but also contributes to making more natural motions. Above of all, it complements the weakness of the existing algorithm where the calculation quantity increases in proportion to increase the number of restricted condition to solve the problems of high order articulated body. In this paper, it is shown two applications as a visible the application instance of UPM algorithm. One is a motion transition editing system, the other is a inductive inverse kinematics system. This method could be applied to produce 3D character animation based on key frame method, 3D game, and virtual reality, etc.
키프레임 애니메이션 기법에 비해 보다 사실적이고 효율적인 작업을 가능하게 한 동작 포착 기법에 의한 동작데이터는 편집의 어려움으로 인해 재사용이 용이하지 못하다는 문제를 가진다. 본 논문에서는 효과적인 동작 포착데이터 편집 기법으로써 비감독 학습 기반의 균등 자세 지도(uniform posture map: UPM)를 이용한 동작 편집 기법을 제안한다. 다른 동작 편집 알고리즘들에 비하여 UPM 알고리즘은 상대적으로 적은 계산량을 요구하여 실시간 적용에 용이하며, 특히 자기 조직 지도(self-organizing map: SOM) 알고리즘을 이용한 동작 편집을 할 때, 실제로 존재하지 않은 자세가 포함될 수 있는 가능성을 학습 단계에서 제거함으로써 자세 생성에 있어서 안정성을 확보할 수 있다. 또한 제약조건이 많은 복잡한 대상체에 대한 적용에 있어서 제약조건의 수에 비례해서 계산량이 증가하는 기존 알고리즘의 약점을 보완한다. 본 논문에서는 UPM 알고리즘을 이용한 동작 편집 기법의 응용으로서 동작 전이 분야와 역운동학 분야에서의 적용 사례를 보였다. 본 논문의 제안 알고리즘은 가상 현실이나 컴퓨터 애니메이션, 게임들의 분야에 다양하게 적용될 수 있다.