• 제목/요약/키워드: invariant $J_3$

검색결과 34건 처리시간 0.023초

ON j-INVARIANTS OF WEIERSTRASS EQUATIONS

  • Horiuchi, Ryutaro
    • Journal of the Korean Mathematical Society
    • /
    • 제45권3호
    • /
    • pp.695-698
    • /
    • 2008
  • A simple proof of the fact that the j-invariants for Weierstrass equations are invariant under birational transformations which keep the forms of Weierstrass equations is given by finding a non-trivial explicit birational transformation which sends a normalized Weierstrass equation to the same equation.

Yield Functions Based on the Stress Invariants J2 and J3 and its Application to Anisotropic Sheet Materials (J2 와 J3 불변량에 기초한 항복함수의 제안과 이방성 판재에의 적용)

  • Kim, Y.S;Nguyen, P.V.;Kim, J.J.
    • Transactions of Materials Processing
    • /
    • 제31권4호
    • /
    • pp.214-228
    • /
    • 2022
  • The yield criterion, or called yield function, plays an important role in the study of plastic working of a sheet because it governs the plastic deformation properties of the sheet during plastic forming process. In this paper, we propose a novel anisotropic yield function useful for describing the plastic behavior of various anisotropic sheets. The proposed yield function includes the anisotropic version of the second stress invariant J2 and the third stress invariant J3. The anisotropic yield function newly proposed in this study is as follows. F(J2)+ αG(J3)+ βH (J2 × J3) = km The proposed yield function well explains the anisotropic plastic behavior of various sheets by introducing the parameters α and β, and also exhibits both symmetrical and asymmetrical yield surfaces. The parameters included in the proposed model are determined through an optimization algorithm from uniaxial and biaxial experimental data under proportional loading path. In this study, the validity of the proposed anisotropic yield function was verified by comparing the yield surface shape, normalized uniaxial yield stress value, and Lankford's anisotropic coefficient R-value derived with the experimental results. Application for the proposed anisotropic yield function to aluminum sheet shows symmetrical yielding behavior and to pure titanium sheet shows asymmetric yielding behavior, it was shown that the yield curve and yield behavior of various types of sheet materials can be predicted reasonably by using the proposed new yield anisotropic function.

MODULAR POLYNOMIALS FOR MODULAR CURVES X0+(N)

  • Choi, SoYoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • 제24권3호
    • /
    • pp.529-531
    • /
    • 2011
  • We show that for all $N{\geq}1$, the modular function field $K(X_0^+(N))$ is generated by j(z)j(Nz) and j(z) + j(Nz) over ${\mathbb{C}}$, where j(z) is the modular invariant. Moreover we derive the defining equation of the the modular function field $K(X_0^+(N))$ from the classical modular polynomial ${\Phi}_N(X, Y )$.

INFINITELY MANY SOLUTIONS FOR A CLASS OF THE ELLIPTIC SYSTEMS WITH EVEN FUNCTIONALS

  • Choi, Q-Heung;Jung, Tacksun
    • Journal of the Korean Mathematical Society
    • /
    • 제54권3호
    • /
    • pp.821-833
    • /
    • 2017
  • We get a result that shows the existence of infinitely many solutions for a class of the elliptic systems involving subcritical Sobolev exponents nonlinear terms with even functionals on the bounded domain with smooth boundary. We get this result by variational method and critical point theory induced from invariant subspaces and invariant functional.

LEFT INVARIANT LORENTZIAN METRICS AND CURVATURES ON NON-UNIMODULAR LIE GROUPS OF DIMENSION THREE

  • Ku Yong Ha;Jong Bum Lee
    • Journal of the Korean Mathematical Society
    • /
    • 제60권1호
    • /
    • pp.143-165
    • /
    • 2023
  • For each connected and simply connected three-dimensional non-unimodular Lie group, we classify the left invariant Lorentzian metrics up to automorphism, and study the extent to which curvature can be altered by a change of metric. Thereby we obtain the Ricci operator, the scalar curvature, and the sectional curvatures as functions of left invariant Lorentzian metrics on each of these groups. Our study is a continuation and extension of the previous studies done in [3] for Riemannian metrics and in [1] for Lorentzian metrics on unimodular Lie groups.

DIRECT SUM FOR BASIC COHOMOLOGY OF CODIMENSION FOUR TAUT RIEMANNIAN FOLIATION

  • Zhou, Jiuru
    • Bulletin of the Korean Mathematical Society
    • /
    • 제57권6호
    • /
    • pp.1501-1509
    • /
    • 2020
  • We discuss the decomposition of degree two basic cohomology for codimension four taut Riemannian foliation according to the holonomy invariant transversal almost complex structure J, and show that J is C pure and full. In addition, we obtain an estimate of the dimension of basic J-anti-invariant subgroup. These are the foliated version for the corresponding results of T. Draghici et al. [3].

Asymmetric Yield Functions Based on the Stress Invariants J2 and J3(II) (J2 와 J3 불변량에 기초한 비대칭 항복함수의 제안(II))

  • Kim, Y.S;Nguyen, P.V.;Ahn, J.B.;Kim, J.J.
    • Transactions of Materials Processing
    • /
    • 제31권6호
    • /
    • pp.351-364
    • /
    • 2022
  • The yield criterion, or called yield function, plays an important role in the study of plastic working of a sheet because it governs the plastic deformation properties of the sheet during plastic forming process. In this paper, we propose a modified version of previous anisotropic yield function (Trans. Mater. Process., 31(4) 2022, pp. 214-228) based on J2 and J3 stress invariants. The proposed anisotropic yield model has the 6th-order of stress components. The modified version of the anisotropic yield function in this study is as follows. f(J20,J30) ≡ (J20)3 + α(J30)2 + β(J20)3/2 × (J30) = k6 The proposed anisotropic yield function well explains the anisotropic plastic behavior of various sheets such as aluminum, high strength steel, magnesium alloy sheets etc. by introducing the parameters α and β, and also exhibits both symmetrical and asymmetrical yield surfaces. The parameters included in the proposed model are determined through an optimization algorithm from uniaxial and biaxial experimental data under proportional loading path. In this study, the validity of the proposed anisotropic yield function was verified by comparing the yield surface shape, normalized uniaxial yield stress value, and Lankford's anisotropic coefficient R-value derived with the experimental results. Application for the proposed anisotropic yield function to AA6016-T4 aluminum and DP980 sheets shows symmetrical yielding behavior and to AZ31B magnesium shows asymmetric yielding behavior, it was shown that the yield locus and yielding behavior of various types of sheet materials can be predicted reasonably by using the proposed anisotropic yield function.

Input-constrained Tracking Control of a Converter Model Using Invariant Sets (불변 집합을 이용한 컨버터의 입력 제약 추종 제어)

  • Kim, Jung-Su;Lee, Young Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제19권3호
    • /
    • pp.177-182
    • /
    • 2013
  • This paper proposes an input-constrained reference tracking control of a converter model. To this end, first it is shown that the bilinear converter model can be equivalently represented by a linear uncertain model belonging to a polytopic set. Then, an input-constrained tracking control scheme for the linear uncertain model is designed based on recently proposed tracking control scheme. The control scheme yields not only a stabilizing control gain but also a feasible and invariant set for the converter model. Finally, simulation results show that the state trajectory always stays in the feasible and invariant set and that the output tracks the given reference while satisfying the input constraint.

THE MODULI SPACES OF LORENTZIAN LEFT-INVARIANT METRICS ON THREE-DIMENSIONAL UNIMODULAR SIMPLY CONNECTED LIE GROUPS

  • Boucetta, Mohamed;Chakkar, Abdelmounaim
    • Journal of the Korean Mathematical Society
    • /
    • 제59권4호
    • /
    • pp.651-684
    • /
    • 2022
  • Let G be an arbitrary, connected, simply connected and unimodular Lie group of dimension 3. On the space 𝔐(G) of left-invariant Lorentzian metrics on G, there exists a natural action of the group Aut(G) of automorphisms of G, so it yields an equivalence relation ≃ on 𝔐(G), in the following way: h1 ≃ h2 ⇔ h2 = 𝜙*(h1) for some 𝜙 ∈ Aut(G). In this paper a procedure to compute the orbit space Aut(G)/𝔐(G) (so called moduli space of 𝔐(G)) is given.

PARAMETER DEPENDENCE OF SMOOTH STABLE MANIFOLDS

  • Barreira, Luis;Valls, Claudia
    • Journal of the Korean Mathematical Society
    • /
    • 제56권3호
    • /
    • pp.825-855
    • /
    • 2019
  • We establish the existence of $C^1$ stable invariant manifolds for differential equations $u^{\prime}=A(t)u+f(t,u,{\lambda})$ obtained from sufficiently small $C^1$ perturbations of a nonuniform exponential dichotomy. Since any linear equation with nonzero Lyapunov exponents has a nonuniform exponential dichotomy, this is a very general assumption. We also establish the $C^1$ dependence of the stable manifolds on the parameter ${\lambda}$. We emphasize that our results are optimal, in the sense that the invariant manifolds are as regular as the vector field. We use the fiber contraction principle to establish the smoothness of the invariant manifolds. In addition, we can also consider linear perturbations, and thus our results can be readily applied to the robustness problem of nonuniform exponential dichotomies.