• Title/Summary/Keyword: introductory physics

Search Result 13, Processing Time 0.02 seconds

Pre-service Teachers' Opinions and Needs on the Physics Education Major Curriculum in College (사범대학 물리교육과의 전공 교육과정에 관한 예비 교사의 의견과 요구)

  • Jo, Kwang-hee
    • Journal of Science Education
    • /
    • v.37 no.2
    • /
    • pp.374-388
    • /
    • 2013
  • The purpose of this study was to investigate pre-service physics teachers' perceptions on the physics education major curriculum. We surveyed 15 junior, and 13 senior college students of physics education major in an university in southern part of Korea. Among them, 24 participants(86 %) took the physics 1 course in high school and 22 participants(79 %) chose the physics 1 in their Korea Scholastic Aptitude Test. The responses showed that the most necessary part in pre-service students' learning was the understanding of high school level physics(36 %), and the understanding of introductory level physics(29 %). In the wish list of courses to be open, high school level physics course was ranked first among seven options by 61 % of respondents. Also, there was some concurrence among respondents in opinion of the necessity for understanding introductory physics. Students felt difficulties in understanding it especially owing to the lack of problem solving skill and comprehension. They added that the sufficient explanation of core concepts should be the first action in the innovative plan. Most participants of pre-service physics teachers hoped to have the revised major curriculum which could help their understanding of high school level or introductory level of physics. However, there was a gap of opinions between the group of students with completion of the high school physics 1 & 2 course and those with non-completion of them. The approach of changing major curriculum with consideration of learners' needs was recommended because the number of students with completion of the high school physics course would probably be decreasing rapidly under these circumstances such as the application of new national curriculum, the reduction of the number of the elective courses in Korea Scholastic Aptitude Test and so on.

  • PDF

Strategy and Application of Phased Context Teaching-Learning for Helping Physics Learning (물리 학습을 돕기 위한 단계적 상황 교수·학습 전략 및 적용)

  • Song, Youngwook;Choi, Hyukjoon
    • Journal of Science Education
    • /
    • v.39 no.3
    • /
    • pp.333-342
    • /
    • 2015
  • The purpose of this research was to investigate the effect of physics learning through the teaching-learning strategy of phased context in introductory physics classes. The participants in the study included 35 university freshmen. The teaching-learning strategy of phased context were developed by idealizing, extending and comparing contexts which were then applied in introductory physics classes : six hour classes about straight line motion, two-dimensional motion and Newton's laws of motion. The effects of the physics learning were then analyzed by the FCI (Force Concept Inventory) and MPEX (Maryland Survey on Physics Expectation) questionnaires. The results showed that the teaching-learning strategy of phased context helped change the force concept and did not change the belief about physics learning. Finally, based on the results of the study, we discuss possible educational implications for phased context in introductory physics classes.

  • PDF

University Students' Perception on the Flipped-learning-based Introductory Physics Course in which Class Hour are Divided into Lectures and Group Problem Solving (강의와 그룹문제풀이가 균형을 이루는 플립러닝 기반 일반물리학 강좌에 대한 대학생의 인식)

  • Lee, Hai-Woong;Yi, Sangyong;Cheong, Yong Wook
    • Journal of Science Education
    • /
    • v.42 no.2
    • /
    • pp.242-255
    • /
    • 2018
  • Recently, flipped learning has been paid much attention as one of the improvement methods of teaching and learning at university level. Few studies investigated the effects of flipped learning in general physics classes. However, in order to be successfully established and spread new attempts such as flipped learning, it is necessary to investigate in detail the effect of flipped learning and the way it is perceived by students in accordance with other variables such as student's background and characteristic. In this study, we investigated differences in students' perception on the flipped learning and their achievement according to their background and characteristic in flipped-learning-based introductory physics course in which class hours are divided into lecture and group problem solving equally. Students' achievement was more influenced by their readiness before the beginning of the semester than their time consuming for learning during the semester. Students generally had a very positive perception of the new way of flipped-learning-based physics teaching. However, students of insufficient prior learning, or relatively not-hard learner agreed with careful selection of subjects rather than the overall expansion of flipped learning.

BRANE WORLD OF WARP GEOMETRY: AN INTRODUCTORY REVIEW

  • KIM YOONBAI;LEE CHONG OH;LEE ILBONG;LEE JUNGJAI
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.1-14
    • /
    • 2004
  • Basic idea of Randall-Sundrum brane world model I and II is reviewed with detailed calculation. After introducing the brane world metric with exponential warp factor, metrics of Randall-Sundrum models are constructed. We explain how Randall-Sundrum model I with two branes makes the gauge hierarchy problem much milder, and derive Newtonian gravity in Randall-Sundrum model II with a single brane by considering small fluctuations.

Fractional-Order Derivatives and Integrals: Introductory Overview and Recent Developments

  • Srivastava, Hari Mohan
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.73-116
    • /
    • 2020
  • The subject of fractional calculus (that is, the calculus of integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past over four decades, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of mathematical, physical, engineering and statistical sciences. Various operators of fractional-order derivatives as well as fractional-order integrals do indeed provide several potentially useful tools for solving differential and integral equations, and various other problems involving special functions of mathematical physics as well as their extensions and generalizations in one and more variables. The main object of this survey-cum-expository article is to present a brief elementary and introductory overview of the theory of the integral and derivative operators of fractional calculus and their applications especially in developing solutions of certain interesting families of ordinary and partial fractional "differintegral" equations. This general talk will be presented as simply as possible keeping the likelihood of non-specialist audience in mind.

A Study on the Effect of Using Demonstrations in Physics Classroom (시연을 활용한 물리 수업의 효과에 관한 연구)

  • Rhee, Eun-Sill;Cho, Hyun-Ji;Lee, Jong-Ho
    • Journal of Engineering Education Research
    • /
    • v.15 no.3
    • /
    • pp.3-11
    • /
    • 2012
  • This paper discusses the effect that classroom demonstrations have on students' conceptual understanding in concepts in introductory physics. We used the same conceptual survey to probe the students' understanding on certain concepts before and after taking the course. We introduce Hake's , which is used to evaluate the effect of various kind of teaching methods, suggested by physics education research groups, on conceptual understanding of students who took the class. The effect of physics class using demonstration turned to be better than the traditional lecture, higher for students who graduated from science schools with higher prior knowledge and demonstration experience. Authors suggest to use to probe concepts which need more attention.

Improvement in University Freshmen's Questioning by Explicit Practice of Experts' Physics Problem Solving Strategies (전문가의 물리 문제 풀이 방략 가시화 연습에 의한 대학생의 질문 향상)

  • Kim, Eun-Sook;Pak, Sung-Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.3
    • /
    • pp.466-477
    • /
    • 2002
  • It was proposed that proper problem solving practice should improve students' questioning in physics. In the previous researches, improvement in students' questioning was observed after practice of making questions given the examples of desirable questions. In this study, the problem solving strategies used by experts were introduced to students in the form of step-by-step guide to follow in problem solving practice. The directions in the guide were concrete and operational for students to understand the expected behaviors explicitly. It was assumed that students could pinpoint the difficulty specifically through this guide, which would result in positive effects on students' recognition and expression of their own questions. The subjects in this study were college freshmen enrolled in the introductory physics for science or engineering major. The physics problems from the textbook were solved and practiced in the traditional way for controlled group. Worksheets designed to follow experts' problem solving strategies were used for the experimental group. Two groups were taught in the same way during lecture part of the class. Students were asked to describe the difficulties they had during homeworks or tests. Questions in this study means these descriptions written by students although they were not necessarily in the form of interrogative sentences. The questions were analyzed both in quantity and quality. Quantitatively, more students spontaneously turned in their questions in the experimental group than in the controlled group. Regarding the quality, there were more students in the experimental group than in the controlled group who described their difficulties in detail or recognized the need for the procedural knowledge.

Positive Effect of Non-directive College Introductory Physics Laboratory (비지시적 대학 일반 물리 실험의 긍정적 효과)

  • Kim, Eun-Sook;Hwang, Kyung-Soo
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.1
    • /
    • pp.55-64
    • /
    • 1997
  • Experiments done in traditional physics laboratories have been criticized for giving too detailed instruction so that student could follow the experimental procedure without understanding. This type of experiment is often called "cookbook experiment." Cookbook experiment was known to be little help to understand the physics concepts and to increase student interest. To solve these problems with traditional cookbook experiment, non-directive introductory physics laboratory was designed and tried with the freshmen of Department of Physics Education of Seoul National University. Non-directive laboratory was characterized by the lack of step by step instruction for students to follow. The instruction students received consisted of the goal of experiment, a short introduction, and a list of suggested materials to be used. Student designed the experimental procedure and decided what material they wanted to use. One group submitted one lab report as a group to encourage cooperation among students. Lab report could be written in any form students wanted and no penalty point was given to poor data or inappropriate theory, etc to encourage taking risks. Penalty points were given if the students did not get involved during class hours. Student received extra point for being creative and / or working hard. Teaching assistants used Socratic dialogue in helping students to find their own way instead of explaining what they had to do. Students' interest about the non-directive experiment was studies at the of the semester. A questionnaire was made for students to answer. The questionnaire consisted of four categories, the equipment and the laboratory, the experimental procedure, the lab report, and teaching assistant. For each category, student were asked to explain the differences from other laboratory classes, features they liked and the reasons why they do, features they did not like and why they did not. At the end of the questionnaire, students were asked what hey wanted to change and what they did not. They also could put any opinion they had other than the questions asked. Student overall opinion was very positive. All the students said they liked the lack of detailed experimental procedure because it gave them the feeling of achievement, made them feel challenged and think in more diverse and creative ways. Students liked the lab report because group report forced them to discuss more and the free form lab report helped them to focus on the what they did. Student responses about the teaching assistant was also positive but not as enthusiastic as the experimental procedure or lab report. However students recognised that the role of the teaching assistant was as a guide, a supporter, or a facilitator.

  • PDF

Introduction to Neutron Scattering for Magnetic Materials Research (자성소재 연구를 위한 중성자산란 입문)

  • Jeong, Jae-Hong;Lee, Sang-Hyun;Park, Je-Geun
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.3
    • /
    • pp.103-108
    • /
    • 2012
  • Having a de Broglie wavelength of a few ${\AA}$ with its corresponding energies in the range of a few to a few hundreds meV, neutrons are ideally suited for the studies of structure and dynamics in condensed matter research. Neutron scattering has been developed over the past 60 years or so and become a very mature and established experimental technique in the very broad range of material sciences. In this short introductory article, we have explained its working principles and provided few selected examples of application.

Are the Distribution of Einstein Crossing Times of Galactic Microlensing Events Bimodal?

  • Struble, Mitchell F.;Wickramasinghe, Thulsi
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.191-194
    • /
    • 2012
  • The observed distribution of a blending-corrected sample of Einstein ring crossing times, $t_E$, for microlensing events toward the galactic bulge/bar are analyzed. An inspection of the distribution of crossing times suggests that it may be bimodal, indicating that two populations of lenses could be responsible for observed microlensing events. Given the possibility that microlensing in this direction can be due to the two most common classes of stars, main-sequence and white dwarf, we analyze and show via Monte Carlo simulations that the observed bimodality of $t_E$ can be derived from their accepted mass functions, and the density distributions of both stellar populations in the galactic disk and bulge/bar, with a transverse velocity distribution that is consistent with the density distribution. Kolmogorov-Smirnov (KS) one sample tests shows that a white dwarf population of about 25% of all stars in the galaxy agrees well with the observed bimodality with a KS significance level greater than 97%. This is an expanded and updated version of a previous investigation (Wickramasinghe, Neusima, & Struble, in Mao 2008). A power-point version of the talk, with introductory figures, is found at: https://sites.google.com/site/rhkochconference/agenda-1/program.