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ABSTRACT

Basic idea of Randall-Sundrum brane world model I and 1II is reviewed with detailed calculation.
After introducing the brane world metric with exponential warp factor, metrics of Randall-Sundrum
models are constructed. We explain how Randall-Sundrum model I with two branes makes the gauge
hierarchy problem much milder, and derive Newtonian gravity in Randall Sundrum model I with a

single brane by considering small fluctuations.
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I. INTRODUCTION

During the last few years the brane world sce-
nario inspired by developments in string theory has at-
tracted much attention in particle physics, cosmology,
and astrophysics. Basic structure of the brane world
scenario is understood by two representative mod-
els. One is Arkani-Hamed-Dimopoulos-Dvali model
(Arkani-Hamed, Dimopoulos, & Dvali 1998, 1999; An-
toniadis, Arkani-Hamed, Dimopoulos, & Dvali 1998)
and the other is Randall-Sundrum (RS) brane world
models T and II (Randall & Sundrum 1999ab). The
main purpose of this pedagogical review is to intro-
duce the original form of RS models as precise as
possible despite of numerous results (for reviews, see
Rubakov [2001], Dick [2001], and Langlois [2003]) in
diverse research directions (Kaloper 1999; Nihei 1999;
Kim & Kim 2000; Goldberger & Wise 1999ab; Gre-
gory, Rubakov, & Sibiryakov 2000; Binetruy, Deffayet,
& Langlois 2000; Cline & Grojean 1999; Binetruy, Def-
fayet, Ellwanger, & Langlois 2000; DeWolfe, Freed-
man, Gubser, & Karch 2000; Altendorfer, Bagger,
& Nemeschansky 2001; Falkowski, Lalak, & Pokorski
2000; Chan, Paul, & Verlinde 2000; Cohen & Kaplan
1999; Gregory 2000; Arkani-Hamed, Porrati, & Randall
2001; Arkani-Hamed, Dimopoulos, Kaloper, & Sun-
drum 2000; Kachu, Schulz, & Silversetein 2000; Ko-
dama, Ishibashi, & Seto 2000).

The motivation of RS model I is to propose a reso-
lution of the gauge hierarchy problem, a long standing
puzzle in particle phenomenology, from the viewpoint
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based on the geometry of our spacetime structure in-
stead of symmetry principle like supersymmetry. Here
let us briefly explain what the gauge hierarchy prob-
lem is. According to the standard model employing
the idea of gauge symmetry and its spontaneous break-
ing, the mass scale of electroweak symmetry breaking
is Mgw ~ 10®> GeV which means each gauge particle
has mass of order 10~ ?*kg but that of gravity is the
Planck scale Mpjanck ~ 10 GeV. For the units and
conversion factors, refer to Tables 1 and 2 in Appendix
A. This huge gap between the electroweak scale and
the Planck scale, Mew/Mpianck ~ 10718, needs a fine
tuning up to 16 digits.

Let us understand the meaning of the fine tuning
by using a toy example. Suppose we observe a par-
ticle of mass Mexperiment = 1,100 GeV through ex-
periments. However, quantum field theory computa-
tion usually predicts enormous quantum correction like
AMquantum correction ™~ 1019 GeV irrespective of the
bare mass parameter Mmyae, which coincides with the
ultraviolet cutoff in order Mpjanck. Since we can regard
this bare mass parameter as classical mass of a particle
in the classical Lagrangian, a natural bare mass param-
eter should be about mpare ~ Mexperiment ~ 1,100 GeV
in the environment of the electroweak scale. On the
other hand, a simple but unavoidable algebra requires
that mpare is DOt Mexperiment = 1,100 GeV but mpare =
Mexperiment — A7nquantum correction ™ 1.1 x 103 - 1019
GeV. A fine tuning of myare up to 16 digits like mpyare =
—9.999999999999989 x 10'® GeV is a nonsense in any
rational science. It means that the standard model at
present form seems imperfect and this gauge hierarchy
problem hinders unifying the standard model in elec-
troweak scale and the gravity in Planck scale. Thus we
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need an additional physical principle to protect physi-
cal results from the above nonsensical fine tuning. We
will introduce the RS brane world model I (Randall &
Sundrum 1999a) in subsection IIL.(b), and explain how
the warp factor in the RS I makes the gauge hierarchy
problem much milder without introducing other ingre-
dients like supersymmetry in subsection IV.(b).

The RS models are constructed in the scheme of
general relativity so that the gravity induced on the
3-brane (or our universe) should satisfy the observa-
tional and experimental bounds. The first step is the
reproduction of Newtonian gravity on the 3-brane in
the weak gravity limit with no doubt. Though it seems
nontrivial due to negative cosmological constant in the
bulk, the induced gravity on the 3-brane in RS II is
exactly the Newtonian gravity from the zero mode of
small gravitational fluctuations, and the small correc-
tions are given by continuous tower of higher Kaluza-
Klein (KK) modes (Randall & Sundrum 1999b).

The rest of the paper is organized as follows. In
section II, we introduce a few basic ingredients in gen-
eral relativity for subsequent sections, including the
metric, Einstein-Hilbert action, cosmological constant,
Einstein equations, and Kretschmann invariant. Sec-
tion III is composed of 3 subsections. In subsection
IT1.(a), we compute some properties of 5-dimensional
pure anti-de Sitter spacetime. In subsections IIIL(c)
and I11.(b), we give a detailed description of the geom-
etry of RS model T with two 3-branes and RS model
II with the single 3-brane, respectively. In subsection
IV.(a), we consider small gravitational fluctuations on
the 3-brane in RS model 11 and show that their zero
mode depicts the Newtonian gravity. In subsection
IV.(b), we show how to treat the gauge hierarchy prob-
lem in the scheme of RS I by using the warp factor.
We firstly derive 4-dimensional gravity on gur 3-brane,
and then demonstrate the emergence of the electroweak
scale masses for Higgs, gauge boson, and fermion. We
conclude in section V with a summary and an introduc-
tion of viable research directions of RS models I and II.

II. SETUP

In order to study and construct various brane world
scenarios with warp factor, as a basic language, the gen-
eral relativity is good. This seems indispensable since
the description of the early universe has been made
by the cosmological solutions of Einstein equations. In
this section we introduce a minimal setup and basic
notions for the brane world scenarios. Definitions and
notations we use are summarized in Appendix A, and
the detailed derivation of various equations and quan-
tities are given in Appendix B. i

In D-dimensional curved spacetime composed of a
time ¢, a p-brane z¢, and an extra-dimension z, the
geometry of the curved spacetime is described by the
metric

ds® = gABdmAde (1)

guvdatda” + 2g,pdxtdz + gppdz? (2)
goodt2 -+ 290idtda:i + gij dztdz?
+2g,pdztdz + gppdz*. (3)

Il

From here on, the capital Roman indices (4, B,--- =
0,1,---,p,p+1) denote D-dimensional bulk spacetime
indices (D = p + 2), the Greek indices (p,v, -+ =
0,1,---,p) the spacetime indices of the worldbrane, and
small Roman indices (a,b,---%,7,k,--- = 1,2,---,p)
the coordinates of the brane. Therefore, we call the
space described by the coordinates transverse to the
p-brane is called by eztra dimensions. Obviously, the
main concern is our world of p = 3 since our present
spacetime is (1+3)-dimensional and the extra dimen-
sion is one denoted by z-coordinate as the simplest case.
A schematic shape of the brane world is shown in Fig. 1.

extra

imexnsion(z)

Fig. 1.— A schematic shape of brane world model: Spatial
section of our universe at time ¢ is a brane (shaded region)
expressed by coordinates z* and that of higher dimensional
bulk embedding our universe (transparent box) is depicted
by z“. One coordinate z transverse to the brane is eztra

dimension.

The action of our interest is

14

M,
S = /dDLE ap |:— 167 (R+ 2A)] + Smattera (4)

where M, is the fundamental scale of the theory, A a
cosmological constant, and Spatter stands for any mat-
ter of our interest. We read Einstein equations in the
(p+2)-dimensional bulk from the action (4)

1 87
Gap =Rap — 59480 = —75Tup + gash, (5)
where energy-momentum tensor T4p in Eq. (5) is de-
fined by
2 6Smatter
Vap 0948
In this pedagogical review, we take into account the
matters restricted to the brane, which coincide with

(6)

TAB =
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those of original idea (Randall & Sundrum 1999ab).
When the matters are confined on a specific p-brane,
then the metric fluctuation to the z-direction so-called
radion direction vanishes, i.e., dg** = 0, and thereby
the energy-momentum tensor from the sources confined
on the brane becomes

TE?HE = 2 5535:;%; (7)

V34D 6gAB 5g===0

When we particularly consider the metric ansatz
without the cross terms among time variable ¢, spatial
coordinates of the brane z*, (i = 1,2,3), and coordi-
nate of the extra-dimension z, a 5-dimensional metric is
expressed as follows, which includes a flat p = 3 brane
and is convenient for the description of the brane world

ds? = A2 @2 — D2(t, 2)dx"?] — C%(t, 2)d22, (8)

where A(2, z), D(t, z), and C(¢, z) are three real metric
functions of ¢ and z (Kaloper 1999; Nihei 1999; Kim
& Kim 2000). Actually, vanishing off-diagonal metric
components in front of dr#dz is consistent with the re-
flection symmetry of the z-coordinate for orbifold com-
pactification, i.e., 2 — —z. Similar symmetry argu-
ment, e.g., time-reversal (t — —t) or parity (z¢ — —z°
for p = 3), is also applied to the p-brane, which results
in vanishing dtdxz® component. If the geometry of our
interest is static, Eq. (8) becomes

ds® = e**)[dt® — D*(2)dz’®] — C*(z)dz*.  (9)
Introducing a new coordinate Z such as dZ = C(z)dz,
we rewrite the metric (9) as

ds? = 2AEED (@12 — D2(2(Z))dx*?] — dZ%.  (10)

Eq. (10) has two independent metric functions. If we
force Poincaré symmetry with the unit light speed for
the spacetime of the p-brane, then the boost symmetry
asks D?(Z(z)) = 1 so that we finally arrive at

ds? = A D) (dt2 ~da'?)—dZ? = * Py, dat da¥ —dZ°.

(11)

On the other hand, when the cosmology is our inter-

est, we have to consider the homogeneous and isotropic

p-brane. The simplest model is depicted by the met-

ric which involves time-dependence only in front of the
3-brane coordinates, i.e., D(t, Z) = e*®:

ds? = 24D 12 — 2 gt?) —dz?,  (12)

which leads to Eq. (11) in static limit. If a constant
curvature consistent with the homogeneity and isotropy
is included, we have

ds2 = e2A®)
dr?
2 2b(t
—dz?, (13)

r2d6? + r? sin? 0d¢2)}

where K = 1 corresponds to three sphere of unit radius,
K = 0 3-dimensional flat space, and K = —1 three
hyperbolic space.

For this metric (11), the Einstein equations (5) are
given by the following simple equations

, 2 8T

AT = m(mﬁ_g’ o
1 8= '

A" = —ogp (TE-TY), (T=T1), (15)

where the prime in A" denotes the differentiation by Z-
coordinate. In order to identify the physical singularity,
we look into sum of square of all components of the
Riemann curvature tensor so-called the Kretschmann
scalar invariant from the metric (12)

RABCDRABCD — 2(p+ 1) |:pA/4 + 2 (A/I + A/2)2j| )
(16)
Derivation of the above equations and quantities are
given in Appendix B.

A warp coordinate system (12) is unusual for the
description of anti-de Sitter spacetime so that we in-
troduce familiar logarithmic coordinate such as dZ ~
+dy/+/B(y) with B(y) ~ €*4(%), Then the metric (12)
is rewritten in other coordinates

ds* = B(y)(dt* — dz*?) — dy” (17)
B(y)’
and corresponding Einstein equations are
12 8B 87T
B = —|—=T/-A), 18
p(p+1) (Mf Y ) (%)
" P + 2 327T t 4A
B = —-—— T — T + ———,
s+ 0oz T e
(T} =T7), (19)

where the prime " in this paragraph denotes differentia-
tion by new variable y of extra dimension. Similarly, we
read the Kretschmann invariant from the metric (17)

p+1
8B2

In subsequent sections, we shall discuss Randall-
Sundrum type brane world by use of the prepared
building blocks.

RABCD R, nep = (pB'4 + 83”2) . (20)

II11. GEOMETRY OF RANDALL-SUNDRUM
BRANE WORLD

(a) Pure Anti-de Sitter Spacetime

When the bulk is filled only with negative vacuum
energy A < 0 without other matters Spatter = 0 50 that
T4ap = 0, then the Einstein equations (14)~(15) are

2A

A" —=0and A2 = -~ __
p(p+1)

(21)
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Notice that A(Z) can have a real solution only when A
is nonpositive. General solution of Eq. (21) is given by

21|

mZ + Ay, (22)

As(2) =+

where the integration constant Ay can be removed by
rescaling of the spacetime variables of p-brane, i.e.,
dz* — dz* = e4odz#. The resultant metric is

ds? = e*®2y  ditdz” — dZ°, (23)

where k = /2|A|/p(p+ 1) and a schematic shape of

the metric e24(%) is shown in Fig. 2. Since the metric

e24:(2)

=27, \ 22
\
\
\
\
\
\
\
N
N
St
~N
—__——/ <
~ ~
0 4

Fig. 2.— The metric function of anti-de Sitter spacetime
o2A+(2) _ 42kZ

function e?4+ vanishes or is divergent at spatial infinity
Z = Foo respectively, there exists coordinate singular-
ity at those points. Despite of the coordinate singu-
larity, the spacetime is physical-singularity-free every-
where as expected

8(p+2)

RABCPR, pop = —=
Pp+1)

A% (24)

As mentioned in the previous section, the warp coor-
dinate system (23} is unusual to depict geometry of the
anti-de Sitter spacetime. A coordinate transformation
to the metric (17) via dZ = ady/y leads to

+,/8AL g, (v )® d 2
e VD (%) nuudi‘“d:ﬁ”—az———y

2
ds® = "
(25)
ta, [ 8lAl du?
=y p@+”7mydi”dj”——a23%r (26)
d 2
_ y2nuudi”di”——a22%r (27)

_ p(p + 1) 2 yi2 v d_y2
= oA (y N dztde ) (28)

The integration constant Inyg in the first line (25) was
eliminated by rescaling of the spacetime variables of p-

brane, i.e., di# = eToVEIA/PE+)InYodzu  The third
p(p+1)

AT -
A rescaling of a coordinate dz#* = di*/« leads to the
line (28). Because of the coordinate transformation
Z = Iny%, Z = oo corresponds to y = 0 when o < 0
(or y = oo when & > 0) and Z = 0 to y = 1 so that
the spacetime described by the coordinate system (11)
does not represent entire anti-de Sitter spacetime but
a patch of it as is obvious from the coordinate trans-
formation, Z = Iny®. Now the developed coordinate
singularity is found at both y = 0 and y = co in the
metric (28). Of course, the Kretschmann invariant (20)
is independent of the choice of specific form of the met-
ric so that it is the same as Eq. (24). An intriguing
observation is that the coordinate singularity at y = 0
can also be understood as a horizon with zero radius
limit (or equivalently zero mass limit) of black p-brane.

line (27) was obtained by a choice of a as £2

(b) Randall-Sundrum Brane World I1

When we want to use the obtained solutions (22) for
compactification of the extra-dimension {Z}, the met-
ric function should necessarily be single-valued even at
infinity Z = £o00. A natural method is to urge a re-
flection symmetry (Zs-symmetry) to Z-coordinate so
that we can have two continuous solutions in Fig. 3 by
patching two solutions (22) at the origin Z = 0. Since
we are not interested in exponentially-blowing up solu-
tion in Fig. 3-(b), we consider only the exponentially-
decreasing warp factor in Fig. 3-(a) from now on.
Though it is continuous, it does not satisfy the Ein-
stein equations (21) at the origin Z = 0 as far as we
do not assume a singular matter configuration at that
point. The curve of the first derivative of A(Z) is given
by the step functions

An(Z) = —k[0(2) - 0(-Z)], (29)

and thereby that of second derivative is nothing but a
delta function instead of zero as in Eq. (21)

A(Z) = —2k8(Z). (30)

Schematic shapes of first and second derivatives of the
warp factor e241(Z) are shown in Fig. 4.

An appropriate interpretation of the delta function
in Eq. (30) is to regard it as a matter source confined
on the p-brane at Z = 0. Eq. (B8) tells us that T% = T*
for any static metric. Substituting Eq. (30) into one of
the Einstein equations (15), we obtain

pkM?

T, —TE, = —=
IIt 11Z An

82). (31)

Insertion of Eq. (29) into the ZZ-component of the Ein-
stein equation (14) provides vanishing ZZ-component
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24(Z)
‘ emA
A 7
AY 4
AY ’
AN 7
A} ’
AY 4
AN 7’
AY I
(b)\\ /I
\\\ 1/”
//( (@)
0 “Z
Fig. 3.— Continuous Zz-symmetric anti-de Sitter space:
(a) 4@ — ~2kZl(50lid line), (b) €A% = ¢2kIZl

(dashed line).

of the energy-momentum tensor
A
1, = XM oz -0z -1y =0 o)

Therefore, we have

‘ M2 z
Tie =T = —8—7—(—2pk5(z), Itz =0, (33)
and corresponding covariant form of it is
A M? A

This is the result we expected, that is, the delta
function source in Eq. (30) is indeed a constant matter
density on the p-brane at the origin. Signature of the
energy-momentum tensor (34) implies the positiveness
of the p-brane tension. When the matter is confined
on a specific p-brane, the metric fluctuation to the ra-
dial direction vanishes, i.e. §g%% = 0. Therefore the
energy-momentum tensor from the sources confined on
the p-brane becomes
2 5Sbrane

Tbrane — matter

AR S s T5gAB (35)

§gZZ=0

An appropriate form of matter action is written by
use of Eq. (7) such as

M.

P [e%}
S = 8* / Py / dZ./q9p 2pkd(Z). (36)
™ — 0o

Note that the above junction condition at the p-brane
is nothing but a fine-tuning condition since all the con-
tents of the matter action (36) should be determined
by the quantities of the bulk, specifically by the funda-
mental scale of the bulk theory M, and the bulk cosmo-
logical constant A. Since there is no constant density

d (24(2))

_di(e2A<Z))

»Z
5 -
472

Fig. 4.— (a) First derivative of e2411(?)_(b) Second deriva-

tive of e2411(%)

term in the p-brane action, the effective cosmological
constant on the p-brane (or our universe) vanishes.

The resultant metric of Randall-Sundrum brane world
model II (Randall & Sundrum 1999b) is

ds? = e~ 2%\2ly  dzrdz” — dZ*. (37)

Once we transform it to the coordinates (17), we can
easily find coordinate singularities at both infinity,
Z = 4oo. Since we added the matter on the p-brane
as a delta function source, the Kretschmann invariant

contains a delta function like physical singularity at
Z=0

ABCD
R Rapcp

sl (s Y
= p+1+< ot T 25(2)) (38)

(c¢) Randall-Sundrum Brane World I

Suppose that the coordinate of the extra-dimension
Z is really compact in Randall-Sundrum brane world
model I, different from the previous Randall-Sundrum
brane world II with —oo < Z < oco. An appropriate
method from the brane world II to I is attained by forc-
ing periodicity to the coordinate of the extra-dimension
Z in addition to the Zy-symmetry as shown in Fig. 5.
It is exactly an orbifold compactification by S!/Z, and
thereby physics of our interest lives in a compact re-
gion {Z|[0,r.7]}. To achieve this geometry by adding
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matters on the branes at both Z =0 and Z = r.7, we
already learned that two delta function sources should
be taken into account at both Z = 0 and Z = r.m,
similar to the action (36):

e~ 241(2),
1 1 1
WV
—TT¢ 0 T Z

Fig. 5.— Metric function e 241} for Randall-Sundrum
compactification I. There is a hidden brane matter at Z = 0,
and our world in electroweak scale is located at Z = rcm.

St

(H

St|z=0 + Stlz=rox

P
- =* | grt!
8 / :v

« /_ " 47T 20k(8(2) — 8(Z — o).
c (39)

Then the corresponding energy-momentum tensor re-
stricted on both p-branes is computed by the formula

(7)
M7

T s = 8—7T2pk[5(Z) — 8(Z — rem)|0k648"%,  (40)
and the Einstein equations (14)~(15) become
Al(Z) = —2k[0(Z) ~0(-~2)]
2k (0(Z —rem) — 0(—Z + rem)], (41)
A(Z) = —2k[6(Z2) - 8(Z — rem)]. (42)

Note that the brane at Z = 0 has positive tension but
the other brane at Z = r.7 has negative tension. The
metric of the Randall-Sundrum brane world I (Randall
& Sundrum 1999a) is expressed by

ds?® = e~y datdz” —rlde®, (0< ¢ <), (43)

It is free from coordinate singularity but involves phys-
ical singularity at both patched boundaries (Z = 0 and
Z =rem):

2|A|

p(p+1)

8 A
R RABCD — 2IA
ABCD pl | P

2
-2(6(2) - 0(Z — T‘Cﬂ'))} } (44)

Again, we encounter the fine-tuning conditions: One
is the fine-tuning that the brane matter action is com-
pletely determined by the bulk negative cosmologi-
cal constant A and the fundamental scale of the bulk

theory M,, and the other is the fine-tuning that the
magnitudes of both brane matter actions, Si|z—o and
S1lz=r.x, are exactly the same each other but have the
opposite sign:

St|z= Silz=r.n MP :
1|Z_0__ 1 z=r. _ (45)

Vp+ 1 o Vp_|_1 8 ’

where the spacetime volume of each p-brane is denoted
by Vpy1 = [dPT'z. Therefore, the p-brane at the
origin has the positive tension but the other brane at
Z = r.m the negative tension. Note that the effective
cosmological constant vanishes on the p-branes at both
boundaries, Z =0 and Z = rcw.

IV. PHYSICAL IMPLICATION OF
RANDALL-SUNDRUM BRANE WORLD

In this section we discuss two main features of
Randall-Sundrum brane world models. In the model
II with single brane, gravitational fluctuations on the
brane reproduce the Newtonian gravity from normal-
izable zero mode. In the model I with two branes,
the gauge hierarchy problem can be treated in a much
milder form without assuming supersymmetry.

(a) Newtonian Gravity from Model II

In the subsection III.(b), we discussed the Randall-
Sundrum brane world model II which can be defined
within —oo < Z < oo. The summary for this RS II
model is described by the metric in Eq. (37). The aim of
this subsection is to determine whether the spectrum of
general linearized tensor fluctuations H,,, is consistent
with 4-dimensional experimental gravity. To do so, let
us consider the small gravitational fluctuations dgan
on the given background metric gag

ds? = (gap + 6gap)dz?dz®. (46)

In present RS model 1I, we restrict the small fluctu-
ations dgap to the metric hy,(z, Z) of 4-dimensional
world on the 3-brane. The metric in Eq. (46) becomes

ds? = [e721Zly,, + by, (x, Z))dade” — dZ°
= H,dz"dz" —dZ?, (47)

where H,, stands for the linearized tensor fluctuations.
Substituting the metric (47) into the Einstein tensor
G 4B with the help of transverse-traceless gauge where

8h,, =0, W =0, (48)

we can easily see that the small fluctuations in the Ein-
stein tensor G 4p have the nonvanishing components
only on the 3-brane as

8w
(5 (ij = __——Mf T;w + Ag,uu)
1
= [5 (U0 8,0, — 0%) + V(Z)} hyw =0,

(49)
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where

V(Z) = 2(((]]">+6k5( ) — 6k2, (50)

U(2) =22 (51)

See Appendix C for detailed derivation of Eq. (49).

To understand all modes that appear in 4-dimensional
effective theory, we perform a KK reduction down to
four dimensions. To do so, let us summarize the ob-
tained linearized equations for the small fluctuations

B (&klz\nﬂffa,,ag — ag) — 2k6(Z) + 2k?
X by (%, Z) = 0. (52)

Since nontrivial potential part depends only on the 5th-
coordinate Z, we can easily apply the separation of
variables to this linear equation. To be specific, insert-

ing
huu (2, Z) = $(Z2)®(2”) (53)
into Eq. (52), we Have
19,0,8(zP) = —m*®(z?),  (m?>0), (54)

_T_?_ 2k Z| _1 2 2 _
e 50 — 2k0(2) + 2K*| w(Z) =0,

(55)

where m is the 4-dimensional mass of the KK excita-
tion.

By making a change of variable as follows

sn(2)
B ez - ),

(sgn(2) = 2/|2] = 0(Z) - 6(=2)),  (56)
Pw) = M72y(2), (57)
we rewrite Eq. (55) in a simpler form
2Py = T, (58)
where .
¥ (w) = Lo Sps(w). - (59)

8(klw|+1)2 2
Here we used d(w) = 6(Z) = 1-Lsgn(Z) and see Fig. 4-
(b) for the volcano-type potential V. Since we have atl
explicit form of the KK potential (59), we will discus$
the properties of continuum modes m in the end of this
subsection. Before doing so, however, we would hke to
give the discussions on the case of zero mode, m? =0,
in Eq. (54).

In the static frame with the rotational symmetry on
the 3-brane (or our universe), Eq. (54) with m? = 0 is
reduced to the well-known Laplace equation

%dii [ﬂd—q{%] =0. (60)

Except for the source point at the origin r = 0, the
Newtonian potential
A
(r) =—— (61)
T

I
satisfies Eq. (60). Here we set ®(&) = 0 and A =
Gnmyme in order to match Newtonian gravity between
two particles of mass my and mz on our brane at Z = 0.
Now that we have Newtonian gravitational potential
on the 3-brane, we solve 1(Z) in the extra dimension.
When m?2 = 0, we directly deal with Eq. (55) given by

2
O = 4k — 4k5(2)] $(2). (62)
For Z # 0, we have
w(Z) = ;boe_%‘Z', (63)

which satisfies the boundary condition obtained by in-
tegration of Eq. (62) for —e < Z < ¢ for infinitesimal

wvor =ty (5] - ) o

Normalization condition [ dZ|¥(Z)|* =1 fixes the

overall constant ¢ as
W(Z) = V2ke 221, (65)

With the explicit form of the KK potential (59)

tan understand the properties of KK modes of m? # 0
Since the KK potential falls off to zero as |Z| — oo, the
continuum KK states with no gap exist for all possible
m? > 0 and then the proper measure is simply dm. For
the detailed discussion on the proper measure through
the Bessel function representation for the solution of
Eq. (58), refer to Randill & Sundrum (1999b).

With the KK spectrim of the effective 4-dimensional
theory, let us compute the gravitational potential ®(r)
between two particles of mass my and mg on our brane
at Z = 0, which is the static potential generated by
exchange of the zero-mode and continuum KK modes
propagators;

m1m2+—m1m2/ dm=-——. (66)

®(r) = Gn

r

There is a Yukawa potential in the correction term,
and an extra factor of m/k comes from the continuum
wave functions 1(Z) for m? # 0 at Z = 0. The cou-
pling Gn/k is nothing but the fundamental coupling of
grav1ty, 1/M2. By pérformmg the integration over m
in Eq. (66), we have a next order correction of O(1/r?)
to the Newtonian potential

mimso 1
(L) e

‘1)(7“) ~ GN
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This is the reason why the RS IT model produces an
effective 4-dimensional theory of gravity: The leading
term is given by the usual Newtonian potential and
continuous KK modes generate a correction term. Note
that the radion can be an additional source of O(1/7%)
contribution (Goldberger & Wise 1999ab).

(b) Gauge hierarchy from model I

As we explained briefly in the introduction, the
gauge hierarchy problem is a notorious fine tuning
problem in particle phenomenology of which the ba-
sic language is quantum field theory. So the readers
unfamiliar to field theories may skip this subsection.

Let us assume that we live on the p-brane at Z =
rem and try a dimensional reduction of the Einstein
gravity from the D = p+2-dimensional gravity to p+1-
dimensional gravity on the p-brane at Z = r¢w. Then
we have

SEHD = 167 TN/ |gD|R (68)
MP
167r/d z4/| det g, |
Te™
x/ dZe ®P=VEIZNR 1 4+ (69)
—TeT
MP
- _ * o= (p—1)Ykrem
16km [1 € }
/d”“m /|det g | (Rp41 + -+ 7) (70)
= féavlrld( /dp+1 Vet gun| (Rpsn + )
(71)
= SeHpri+---. (72)
We used gp = e~ 2(P+D*IZl det g, and R = e2*I1Z1gw R,
+-- = e ZIR, 1 + - when we calculated the second
line (69) from the first line (68). By comparing the

third line (70) with the fourth line (72), we obtain a
relation for 3-brane among three scales Mpianck, M,

|A| (p = 3):

p(p+1)
M}g‘lanck = W

8|A| =3
X |1 —exp| —4) ——=rcm || MP™".
[ P ( p(p+1) )}

(73)

A natural choice for the bulk theory is to bring up
almost the same scales for two bulk mass scales, i.e.,

M, =~ +/|A|. Suppose that the exponential factor in
the relation (73) is negligible to the unity, which means

. is slightly larger than 1/4/|A|. Then we reach

MPlanck ~ M* ~ v |A! (74)

A striking character of this Randall-Sundrum com-
pactification I is that it provides an explanation for
gauge hierarchy problem that why is so large the mass
gap between the Planck scale Mplapex ~ 1019GeV ~
10738 Mg and the electroweak scale Mgw ~ 103GeV ~
10754 M without assuming supersymmetry or others.
As a representative example, let us consider a massive
neutral scalar field H which lives on our 3-brane at
Z = r.m:

Sscalar = / dZ(S(Z

—reT

— 7reT)

1 1 :
X /d4:8\/9_ l§9AB3AHaBH"‘ §MglanckHZ]
:/ dZe *215(Z — ror /d4 EAVEN

X Be%lzl wo,HE, H — Mplanckfﬂ
~ Z(BZH)Q:I
d'z T\ —ga

1 1
x [§g‘“’8uH8,,H - 5(e‘rc”’“Mmanck)%ﬂ}

—2rc7rk

(75)
_e—ZTCﬂk/d4x\/_—g4
x [%g‘“’é‘uH&,H - %MEWHQ] ,
(76)

where ds® = gapdz?dz®? = e‘%'Z'gw,da:“dx” — dZ2.
The last two lines give us a relation:

Mew 2|A| —16 :
= eX — ———TcT | ~ 10 . 77
MPlanck P < p(p + 1) ( )

Therefore, the radius r. of compactified extra dimen-
sion of the Randall-Sundrum brane world model I is
determined nearly by the Planck scale:

Mpianck

1 s
—_ — A ~ .
VIA| 30 (78)

e  16v/6in10

All the scales such as the fundamental scale of the bulk
M., the bulk cosmological constant \/|A, the inverse
size of the compactification 1/r¢, are almost the Planck
scales Mpianck ~ 1019 GeV together. The masses of
matter particles on our visible brane at Z = r.m are in
electroweak scale Mpw ~ 102 GeV, however those on
the hidden brane at Z = 0 in the Planck scale. Though
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the gauge hierarchy problem seems to be solved, it is
actually not because a fine-tuning condition was urged
in Eq. (45). However, it becomes much milder than
that before.

How about a massive gauge field A,, which lives on
our 3-brane at Z = r.mw? We have

Spauge = / " 4Z8(Z - rer) / d'z /3

—TeT

1
X [_ZQACQBDFABFCD + M2, 9 BAL AR

:/C dZe“”“lZ‘(S(Z—rcﬂ)/d4:v\/~§4

1 A
§ [—Ze%'ZlgupguAFqup/\ +

2 2k|Z| spv
Mpjancke ! g ALAL

~ 1. Vo
= /d4x\/—g4 {—Zg“pg FoFy+
(e_TCWkMPlanck)quuAuAu (79)

= /d4x\/——g4

1
X l:__gupgqulepo + méaugegw/AuAl/:I . (80)

4

From Eq. (79) and Eq. (80) with Eq. (77), we read
exactly the same mass hierarchy for the gauge field:
Mgange = e "™ Mplanck = Meym. Therefore the gauge
hierarchy can be interpreted by introducing the massive
gauge field similar to the case of the massive neutral
scalar field H.

Finally let us consider a fermionic field of which mass
is provided by spontaneous symmetry breaking and its
Lagrangian is

Efermion = ‘I}'YAVA“II + g¢\Tf‘I’, (81)

where g is the coupling constant of Yukawa interaction.
If we neglect the quantum fluctuation d¢ of ¢, i.e. ¢ =
(¢) + ¢, the Lagrangian (81) becomes

‘Cfermion = \I,IVAVA\II +g <¢> \P\I/ + (82)

where the second term is identified as mass term, and
we neglected the vertex term gé¢¥ ¥ because we are not
interested in quantum fluctuation. Again the fermion
lives on our 3-brane at Z = r 7w, and then the action is

e
Sfermion = / dZ(s(Z_T'CW)/d4x gs

T

X [U7*ef VAT + Mprane U], (83)

where e is vielbein defined by gaB = nape%el and

Mpianck = g (¢) since the symmetry breaking scale
should coincide with the fundamental scale. Subse-
quently, the action (83) becomes

- / dZ(S(Z—er)/d4az

X+/g5 {\iw“erA\I’ + MPlanck‘i/\Il:|

= /c dZe_4k|Z|5(Z—rc7r)/d4x\/——§4

—TeT

S fermion

X {e“Z'\le“égVM\Il — U762V 0 +
MPlanck\I"ll:|
d4117\/ -—-g4

x [@yaégvﬂqf T (e_’"C”kMplanck)\Tl\I/]

e~3rc7rlc

(84)
— e—3rc7rk d43:\/——§4
x [mizfyaégvuqf + mfermionw] . (85)

Once again we obtain the same mass hierarchy relation
Mfermion = € "™ Mplanck = Mew for the fermion from
Eq. (84) and Eq. (85) with the help of Eq. (77).

In this subsection, we demonstrate how to under-
stand the gauge hierarchy problem in the context of
Randall-Sundrum brane world model 1.

V. CONCLUDING REMARKS

In this review, we explained original idea of Randall-
Sundrum brane world models I and II. RS I pro-
vided a geometrical resolution based on the warp fac-
tor to make the gauge hierarchy problem much milder.
Though the bulk of RS II contains negative bulk cosmo-
logical constant, its effect is canceled by adjusting the
3-brane tension and then Newtonian gravity is repro-
duced in weak gravity limit with subleading KK modes
on the 3-brane identified as our universe.

Let us conclude by providing some information on a
several research topics in this field. They include the
problem finding general form of RS solution (Kaloper
1999; Nihei 1999; Kim & Kim 2000), the stability
of brane world model including radion (Goldberger &
Wise 1999ab), a variety of brane world models basically
similar to RS models (Gregory, Rubakov, & Sibiryakov
2000), cosmological implication of RS model includ-
ing reproduction of standard cosmology (Binetruy, Def-
fayet, & Langlois 2000; Cline & Grojean 1999; Bi-
netruy, Ellwanger, & Langlois 2000), construction of
thick brane world particularly in terms of solitonic
object (DeWolfe, Freedman, Gubser, & Karch 2000)
finding supersymmetry in brane world (Altendorfer,
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Table 1. Mass Scales

mass particle daily astronomy &
scale physics life astrophysics
Planck Mponer ~ 1009GeV  ~ 107 %kg ~ 107°%Mg
Electroweak | Mpw ~ 103GeV  ~ 10~%kg ~ 107 Mg

Bagger, & Nemeschansky 2001; Falkowski, Lalak, &
Pokorski 2000), model in the context of string theory
(Chan, Paul, & Verlinde 2000), brane world with ex-
tra dimensions more than one (Cohen & Kaplan 1999;
Gregory 2000) implication to particle phenomenology
(Arkani-Hamed, M. Porrati, & Randall 2001), classi-
cal solutions which self-tune the cosmological constant
(Arkani-Hamed, Dimopoulos, Kaloper, & Sundrum
2000; Karchu, Schulz, & Silverstein 2000) and CMB
anisotropy study in brane world (Kodama, Ishibashi,
& Seto 2000).
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APPENDIX A. UNITS AND NOTATIONS

For convenience, we summarize the unit system and
the various guantities in this appendix. Our unit sys-
tem is based on h(= h/2m) = ¢ = 1. Since the
light speed c is set to be one, mass of a particle M
and its rest energy Mc? have the same unit. Since
¢ = 3 x 108m/sec and 1J=1kgm?/sec? ~ 10V, we
have 1kg~ 10°"GeV. Astronomical unit of mass is ex-
pressed by solar mass Mg ~ 2 X 10%%kg. Mass scales
are given in Table 1.

Our basic conversion relation is
ic = 2 x 107'°GeV - m. (A1)

Therefore, uncertainty principle AE(cAt) ~ hc tells us
corresponding length scale of quantum physics for given
mass scales as shown in Table 2. Here ‘1 pc’ denotes 1
parsec with 1 pc=3 x 10'°m.

Our spacetime signature is (4, —, —, —, —) and def-
initions of the various quantities we use are displayed
in the following Table 3.

APPENDIX B. EINSTEIN EQUATIONS AND

GEODESIC EQUATIONS

In this appendix we present detailed calculation of
deriving Einstein equations, geodesic equations, and

Kretschmann invariant for the metrics used in the de-
scription of Randall-Sundrum brane world scenarios by
using the formulas in Appendix A.

For the metric (12) of warp coordinates, nonvanish-
ing components of the connection are

t zt g t _ 2by zt
FtZ = ]'_‘ZiZ = A 3 F.’E’(lil =€ b, thi == b,
! 7
FtZt = 62AA 5 Ffﬂcl = _€2A+2bA . (B].)

Nonvanishing components of the Riemann curvature
tensor are

Rt it = _62b(62AA’2 R b),
Rtz = R* zwiz=—-A?— A",
R it = —e*A A2+ 02 + 0,
RZ pigig = T4 + A7),
R:c" wimind = —eZb(eZAA,Q . 62)7
R imimi = e2b(62AA’2 _ 62),
RZ 7 = -4 (A% + A7), (B2)
and those of Ricci tensor are
Ry =(p+ 1)62AA/2 —pb? + 24 A" — pb,
Ry = —€2[(p+ 1) A2 — pb? + 244" - 1],
Rzz = —(p+1)(A% + A7), (B3)
Finally the curvature scalar is
(p+1Hp+2) G2A L2

R = 224
2

1), P
- p(—p;—)zﬂ +(p+1)e*AA" —phl. (B4
From Eqs. (B3)-(B4), nonvanishing components of the
Einstein equations (5) are in arbitrary D-dimensions

p(pQ_ 1 hRe—2A _ p(p;— 1)A/2 _pA//

¢t =

Table 2. Length Scales

length daily  astronomy &

scale life astrophysics
l/MPlanck 10—55m 10—52pc
]-/MEM 107 °m 10_36pC
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= - Z}Ti +A, (B5)
Gi = (p—1)be 24 4+ ‘,[Lp;—l)l?e‘m

- p(—p;ﬁA’z —pA = —;Z?T@ +A, (B6)
GZ = phe 24+ ZLp;ﬁll)Qe_zA - @A’Z

= —%Tg +A. (BT)

Simplifying the above equations (B5)~(B7), we have

. ST

(1 —p)be™24 = U7 (Ttt - Ti) ) (B8)
.. 8
p(b+bHe 24 4 pA” = _]V;; (T% - Ttt) (B9)
_ (%BJFZ')Q) o244 472
2 87
=—— | —=T%2—-A). B10
p(p+1) (Mf d ) (B10)

Once we turn off the time-dependence of the scale fac-
tor b(t), Egs. (B8)—(B10) become Egs. (14)—(15).

Structure of a fixed curved spacetime is usually
probed by classical motions of a test particle. Once
we obtain geometry of a brane world, then motions of
a classical test particle in the given background grav-
ity gap of the D-dimensional bulk are described by
geodesic equations

d?zA . daP daC¢
ds? BC 4s ds

where the parameter s is chosen by the proper time
itself, a force-free test particle moves on a geodesic.
For the metric with warp factor (12), nontrivial com-
ponents of the geodesic equations (B11) are

=0, (B11)

2
ds) =0, (B12)

et odtdZ o, (ddt

@—FA %E_‘L e —_—

A2zt datdZ . dt dxt

42 N T 00 (B

d2Z o, o (dt)?
SN 2
7

—e24+2b 4 (%) =0. (B14)

S

The Kretschmann invariant is
N , 12
RABCDRABCD =4p {(b + b2)6_2A— A 2]
. 1o 2
+2p(p — 1) (b26_2A— A 2)

+4(p+1)(A" + 42?2, (B15)

which reduces to Eq. (16) in its static limit.
Let us repeat calculation for the following metric

ay?
B(y)

We have nonvanishing components of the connection

ds® = B(y)[de® — 220 d?] — (B16)

7 ’

i B B .
t T _ _ t _.2b
Fty—rmiy—@, Fzy——Q—'B*, Fm,zl—e b,
i . 1 ’ 62b ’
(B17)

Nonvanishing components of the Riemann curvature
tensor are

Rl = e—%(4i)2 — B 4 4b)
xitxt T 4 3
i B"
R' vty = B yuiy = “op
i 1. . , .
R i = Z(4b — B2 +4b),
i 2b . ’
R” iy = T(4b2 - B?,
2b

i ’

R* g = _T(4b2 - B?),

1 H
Ry tty — —§BB ;

e2b .,
RY siziy = TBB , (B18)
and those of the Ricel tensor are
1 . 7 . "
Ry = Z(—4pb2 +pB? —4pb+2BB ),
€2b . ’ . 1
Ryigi = —4—(4pb2 —pB?+4b-2BB ),
(p + 1)B/I
Ry, = —~—%p (B19)

The curvature scalar is

_ —4p(p+ 1)b* + p(p+1)B'? — 8pb+ 4(p + 1)BB”

R 4B

(B20)

Again, we read the D-dimensional Einstein equa-
tions (5) under this metric

¢ _ pp—1). plp-1)B* p_,
G = 35 " s B 20
8
= —MWPT;JFA, (B21)
. —1. —1). —1)B”?
o - P-ly pe-1;, plp=1B" p,,

7 B ' 2B 8 B 2
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Table 3. Definitions of Various Quantities

quantity definition

Jacobian factor g = det(gu)

connection F”p = %g U(al/gap + 8pga'l/ - aagup)
covariant derivative of a contravariant vector V,AY = 0,AY + T, Ap
Riemann curvature tensor Rt - = 0p F -0y I‘“ + FgTF;, -1,

Ricei tensor R,“, = R ipv

curvature scalar R=g¢""R,,

Einstein tensor Gu =Ry — Q%R

8w
= “yrli T A, (B22)
v _ g-- plp+1);, plp+1)B”
Gy b+ 5B b g 5
= Mp Y (B23)
Then the simplified Einstein equations are
1- p)b i
(—B—~ = Mp " (Tt -T}) (B24)
4 . . ’ "
= (b+4)+B?+28"B
p
327 .
—4 (2—b + b2) +B”
p+1
8B 8w
=—— | -—5TYy-A). (B26
p(p+1) (Mf Y ) (B26)

Their static limit coincides with Egs. (18)—(19).

Nontrivial components of the geodesic equations (B11)
are given by

d?t B dt dy —
752 + 5B ds ds + e“%b a5 =0, (B27)
d?zt B’ dz dy | ;dt dx?

_ - 2
ds 3B QB ds ds bds ds 0, (B28)

d%y dt b [dT)”
— 4+ —1—) —e’BB
ds? + 2 <ds> € ds
_B (@)
2B \ds)
Similarly, we read the Kretschmann invariant under the
metric (B16)

(B29)

N 2
RAPCPRupep = = 4p | b+b° - 5
B? 4

'y 2
+2p(p— 1) (b? - %) +(p+1)B"? (B30)

Tts static limit reproduces Eq. (20).

APPENDIX C. SMALL GRAVITATIONAL

FLUCTUATIONS

In this appendix, we will give the detailed deriva-
tion for Eq. (52). Let us consider the variation of the
Einstein equations (5)

8w
) (GAB —uF —5lap + AgAB) (C1)

where
1 1
6GAB = 6(RAB — -Q-QABR) = 6RAB — ~2-5gABR. (02)

The variation of Ricci tensor in Eq. (C2) is given by

§Rup = VB6C5,4 — VeoCSp, (C3)

where, for small fluctuations, Cf is

6085 = =g*P(Vdgcp+Vedgsp—Vpdgpc). (C4)

From here on we derive Eqs. (C3)—(C4). If we con-
sider variation of the covariant derivative for a vector
as

(5VA)VB = @AVB d VAVB = —CSBVC, (05)
where the tilde over the covariant derivative denotes
the quantity calculated on the basis of the perturbed
metric ap = gap +3gap- After some straightforward
calculations of C4. from its definition, we have

~CSpVe = (-TS5 +I'Sp)Ve, (C6)

so that

1. _ - 5
CSp = =§°P(Vagsp + Vegap — Vpgan). (C7)

2
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For small gravitational fluctuations, Eq. (C7) coincides
with Eq. (C4).

From the definition of Riemann tensor [V 4, VgV =
VpREg 4, we obtain an expression of small variation of
the Riemann curvature tensor

VodREgs = 8([Va,VE)Ve
= (VBSCEo — VadCE:)Vp, (C8)
which leads to
SREBp4 = VBOCE- — V46CHe . (C9)

Contraction of two indices provides that of the Ricci
tensor in Eq. (C3).

Now specific computation of fluctuation equations
for Egs. (47)-(48) is in order. Variation of the Ricci ten-
sor (C3) is calculated by using the expression of Chn
(C4)

1
5RAB - §VBVA5gg
1
- §VC(VB59AC + Vadgpc — Vcbégas),
(C10)
1_, 1
6Ru = 5Vhu+ 5ViVuh
1
- ivA(vuhuA + vuhuA) 3 (Cll)

where hy, = dg,, and h = hﬁ = 5g;j. Note that

avu d?U
U'=—, U'=—.
dz dz?
Under the transverse-traceless gauge (48), we obtain an
expression for variation of the Ricci tensor

(C12)

1, . ) 1(U"\?
5Ruu = 5 (9 8paa - 82) huy - 5 F h’l“/' (013)
Here we used nonvanishing components of the connec-
tion before turning on the fluctuations, which should
have only one Z index

1 1 /U
=0 Th=3 (7)o (©4)
Substituting the scalar curvature
U U’ 2
R=—4|—)—-|= C15
(7)-(7).

we obtain the variation of gravity part, the left-hand
side of the Einstein equations (C2)

1

1
5(R;u/ - é'guuR) = (SR”V - §h’“/R (C16)

(97°0,0, — 0%) h +2<U—H)2h
g OpUo z ) uv U e

(C17)

N =

Variation of the matter part, the right-hand side of the
Einstein equations, is

8 8
] ( Tap + AgAB> = —WfsTAB + Adgas.

- ME
(C18)
From form of the matter source (34), we read
M?
0Tz2 =0, 0T, = S—Wka&(Z)h‘“" (C19)

where we used the relation Typ = ¢ ACTg . By com-
paring Eq. (C17) and Eq. (C18), we finally arrive at
the Einstein equations for the small gravitational fluc-
tuations (52).
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