• Title/Summary/Keyword: intestinal metabolism

Search Result 184, Processing Time 0.027 seconds

Paradigm of Time-sequence Development of the Intestine of Suckling Piglets with Microarray

  • Sun, Yunzi;Yu, Bing;Zhang, Keying;Chen, Xijian;Chen, Daiwen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권10호
    • /
    • pp.1481-1492
    • /
    • 2012
  • The interaction of the genes involved in intestinal development is the molecular basis of the regulatory mechanisms of intestinal development. The objective of this study was to identify the significant pathways and key genes that regulate intestinal development in Landrace piglets, and elucidate their rules of operation. The differential expression of genes related to intestinal development during suckling time was investigated using a porcine genome array. Time sequence profiles were analyzed for the differentially expressed genes to obtain significant expression profiles. Subsequently, the most significant profiles were assayed using Gene Ontology categories, pathway analysis, network analysis, and analysis of gene co-expression to unveil the main biological processes, the significant pathways, and the effective genes, respectively. In addition, quantitative real-time PCR was carried out to verify the reliability of the results of the analysis of the array. The results showed that more than 8000 differential expression transcripts were identified using microarray technology. Among the 30 significant obtained model profiles, profiles 66 and 13 were the most significant. Analysis of profiles 66 and 13 indicated that they were mainly involved in immunity, metabolism, and cell division or proliferation. Among the most effective genes in these two profiles, CN161469, which is similar to methylcrotonoyl-Coenzyme A carboxylase 2 (beta), and U89949.1, which encodes a folate binding protein, had a crucial influence on the co-expression network.

Modified Renshen Wumei Decoction Alleviates Intestinal Barrier Destruction in Rats with Diarrhea

  • Guan, Zhiwei;Zhao, Qiong;Huang, Qinwan;Zhao, Zhonghe;Zhou, Hongyun;He, Yuanyuan;Li, Shanshan;Wan, Shifang
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1295-1304
    • /
    • 2021
  • Modified Renshen Wumei decoction (MRWD), a famous traditional Chinese medicine, is widely used for treating persistent diarrhea. However, as the mechanism by which MRWD regulates diarrhea remains unknown, we examined the protective effects of MRWD on intestinal barrier integrity in a diarrhea model. In total, 48 male rats were randomly distributed to four treatment groups: the blank group (CK group), model group (MC group), Medilac-Vita group (MV group) and Chinese herb group (MRWD group). After a 21-day experiment, serum and colon samples were assessed. The diarrhea index, pathological examination findings and change in ᴅ-lactate and diamine oxidase (DAO) contents illustrated that the induction of diarrhea caused intestinal injury, which was ameliorated by MV and MRWD infusion. Metabolomics analysis identified several metabolites in the serum. Some critical metabolites, such as phosphoric acid, taurine, cortisone, leukotriene B4 and calcitriol, were found to be significantly elevated by MRWD infusion. Importantly, these differences correlated with mineral absorption and metabolism and peroxisome proliferator-activated receptor (PPAR) pathways. Moreover, it significantly increased the expression levels of TLR4, MyD88 and p-NF-κB p65 proteins and the contents of IL-1 and TNF-α, while the expression levels of occludin, claudin-1 and ZO-1 proteins decreased. These deleterious effects were significantly alleviated by MV and MRWD infusion. Our findings indicate that MRWD infusion helps alleviate diarrhea, possibly by maintaining electrolyte homeostasis, improving the intestinal barrier integrity, and inhibiting the TLR4/NF-κB axis.

Difference in the Gut Microbiome between Ovariectomy-Induced Obesity and Diet-Induced Obesity

  • Choi, Sungmi;Hwang, Yu-Jin;Shin, Min-Jeong;Yi, Hana
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권12호
    • /
    • pp.2228-2236
    • /
    • 2017
  • During menopausal transition, the imbalance of estrogen causes body weight gain. Although gut microbiome dysbiosis has been reported in postmenopausal obesity, it is not clear whether there is any difference in the microbiome profile between dietary-induced obesity and postmenopausal obesity. Therefore, in this study, we analyzed intestinal samples from ovariectomized mice and compared them with those of mice with high-fat diet-induced obesity. To further evaluate the presence of menopause-specific bacteria-gene interactions, we also analyzed the liver transcriptome. Investigation of the 16S rRNA V3-V4 region amplicon sequence profile revealed that menopausal obesity and dietary obesity resulted in similar gut microbiome structures. However, Bifidobacterium animalis was exclusively observed in the ovariectomized mice, which indicated that menopausal obesity resulted in a different intestinal microbiome than dietary obesity. Additionally, several bacterial taxa (Dorea species, Akkermansia muciniphila, and Desulfovibrio species) were found when the ovariectomized mice were treated with a high-fat diet. A significant correlation between the above-mentioned menopause-specific bacteria and the genes for female hormone metabolism was also observed, suggesting the possibility of bacteria-gene interactions in menopausal obesity. Our findings revealed the characteristics of the intestinal microbiome in menopausal obesity in the mouse model, which is very similar to the dietary obesity microbiome but having its own diagnostic bacteria.

사람의 장내세균에 의한 인삼 사포닌의 대사(제2보) (Metabolism of Ginseng Saponins by Human Intestinal Bacteria (Park II))

  • 장곡천수부;하주영;박세호;송궁지지;내산아수;허재두;성종환
    • 생약학회지
    • /
    • 제28권1호
    • /
    • pp.35-41
    • /
    • 1997
  • Following ginsenoside-Rb1-hydrolyzing assay, strictly anaerobic bacteria were isolated from human feces and identified as Prevotella oris. The bacteria hydrolyzed ginsenoside Rb1 and Rd to $20-O-{\beta}-D-glucopyranosyl-20(S)-protopanaxadiol$ (I), ginsenoside Rb2 to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow}6)-{\beta}-D-glucopyranosyl] - 20(S)-protopanaxadiol$ (ll) and ginsenoside Rc to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow} 6){\beta}-D-g1ucopyranosyl]-20(S)-protopanaxadiol$ (III) like fecal microflora, but did not attack ginsenoside Re nor Rgl (Protopanaxatriol-type). Pharmacokinetic studies of ginseng saponins was also performed using specific pathogen free rats and demonstrated that the intestinal bacterial metabolites I-111, 20(S)- protopanaxatriol(IV) and 20(S)-protopanaxadiol(V) were absorbed from the intestines to $blood(0.4-5.1\;{\mu}g/ml)$ after oral administration with total saponin(1 g/kg/day).

  • PDF

Short-chain fatty acids, including acetate, propionate, and butyrate, elicit differential regulation of intracellular Ca2+ mobilization, expression of IL-6 and IL-8, and cell viability in gingival fibroblast cells

  • Kim, So Hui;Kim, Min Seuk
    • International Journal of Oral Biology
    • /
    • 제45권2호
    • /
    • pp.64-69
    • /
    • 2020
  • Short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are secondary metabolites produced by anaerobic fermentation of dietary fibers in the intestine. Intestinal SCFAs exert various beneficial effects on intestinal homeostasis, including energy metabolism, autophagy, cell proliferation, immune reaction, and inflammation, whereas contradictory roles of SCFAs in the oral cavity have been reported. Herein, we found that low and high concentrations of SCFAs induce differential regulation of intracellular Ca2+ mobilization and expression of pro-inflammatory cytokines, such as interleukin (IL)-6 and IL-8, respectively, in gingival fibroblast cells. Additionally, cell viability was found to be differentially regulated in response to low and high concentrations of SCFAs. These findings demonstrate that the physiological functions of SCFAs in various cellular responses are more likely dependent on their local concentration.

The Impact of Gut Microbiota in Human Health and Diseases: Implication for Therapeutic Potential

  • Ha, Eun-Mi
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.155-173
    • /
    • 2011
  • Humans have and hold 100 trillion intestinal bacteria that are essential for health. For millions of years human-microorganisms interaction has co-evolved, and maintained close symbiotic relationship. Gut bacteria contributes to human health and metabolism, and humans provides the optimum nutrition-rich environment for bacteria. What is the mechanism of the host distinguishing the intestinal bacteria as its cohabiting partner and what kind of benefits does the gut microbiota provide the human are the fundamental questions to be asked and solved in order to make human life a higher quality. This review explains the physiological relationship and mutualism between the host and gut microorganism, and highlights the potential therapeutic approach for treating diseases, maintaining and improving health based on these correlations.

가미정기탕(加味正氣湯)이 흰쥐 소장의 수송능과 글루코스 이동 및 대사에 미치는 영향 (The Effect of Jiaweizhengqi-tang on Motor Activity, Glucose Transport and Metabolism in Rat Small Intestine)

  • 박규택;김우환;문선영;조수인
    • 대한한방내과학회지
    • /
    • 제22권3호
    • /
    • pp.397-403
    • /
    • 2001
  • Objectives; This study was carried out to investigate the motor activity, glucose transport and metabolism of Jiaweizhengqi-tang(JKT) in rat small intestine. Methods ; The motor activity of the rat small intestine has been investigated by means of measuring barium sulfate passage degrees. Transport and metabolism of glucose were studied in everted sac of rat small intestine with incubation under several conditions. Results; Atropine treatment significantly delayed barium sulfate transit, and JKT pretreatment increased intestinal motor activity, but not significant. JKT administration showed renal toxicity in animal experiment, so clinical safety should settled to use commonly. The transport and metabolism of glucose were greater at jejunum than ileum. So, everted jejunum of rat were used to study the effect of JKT. When JKT were treated, the concentration of glucose were higher than untreated group. This result was thought to be influenced by the glucose in JKT. When 2, 4 dinitrophenol was treated, the transport and metabolism of glucose were decreased, but JKT treated together, the concentration of glucose in serosal solution increased. Conclusions; The transport and metabolism of glucose were influenced by the glucose in JKT. And the effects of JKT were still unidentified, but through continuous investigation, these effects of JKT should be identified.

  • PDF

Proteomic Identification and Characterization of Vibrio vulnificus Proteins Induced upon Exposure to INT-407 Intestinal Epithelial Cells

  • Oh, Man-Hwan;Jeong, Hee-Gon;Choi, Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.968-974
    • /
    • 2008
  • Proteomic analysis led to identification of the proteins of Vibrio vulnificus that were induced upon exposure to INT-407 cells, and 7 of which belong to the functional categories such as amino acid transport/metabolism, nucleotide transport/metabolism, posttranslational modification/protein turnover/chaperones, and translation. Among the genes encoding the host-induced proteins, disruption of purH, trpD, tsaA, and groEL2 resulted in reduced cytotoxicity. The purH, trpD, and tsuA mutants showed impaired growth in the INT-407 lysate; however, the growth rate of the groEL2 mutant was not significantly changed, indicating that the possible roles of the host-induced proteins in the virulence of V. vulnificus are rather versatile.

올리고당 첨가식이가 흰쥐의 지질대사에 미치는 영향 (Effect of Fructooligosaccharide on Lipid Metabolism in Hypercholoesterolemic Rat)

  • 오선진
    • Journal of Nutrition and Health
    • /
    • 제32권2호
    • /
    • pp.129-136
    • /
    • 1999
  • This study was conducted to investigate the effect of fructooligosaccharide on intestinal flora, lipid metabolism and immune response. Thirty two male rats of Sprague-Dawley strain were divided into two groups according to body weight. Each group was fed the diet containing 2% cholesterol or the normal diet, respectively for 4 weeks. Each group was again divided into two sub-groups and they were fed with the diet containing 5% of sucrose and fructooligosaccharide, respectively for 8 weeks. The number of bifidobacteria slight increased, but not significantly, in oligosaccharide groups. Plasma total lipid concentration in cholesterol group was signficantly increased compared to the value in normal group. Dietary oligosaccharide decreased plasma total lipid concentration and triglyceride concentrations in normal group, but not in cholesterol group. Fecal lipid excretion was higher in cholesterol group than in normal group. Fecal cholesterol concentration in cholesterol-oligosaccharide group was significantly increased compared to other groups. Cholesterol had slight effects on TBARS and the immune status, but dietary oligosaccharide had no effects on these variables. The results in this study suggest that dietary oligosaccharide had no effect on serum and liver profiles of rats fed high cholesterol diet but increases the fecal cholesterol excretion.

  • PDF

Purification and Characterization of $\beta$-Glucosidase and $\alpha$-Arabinofuranosidase Metabolizing Ginsenoside Rc from Bifidobacterium K-103

  • Park, Sun-Young;Kim, Dong-Hyun
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.224.2-225
    • /
    • 2003
  • Ginsenoside, major components of ginseng have been reported to show various biological activities including an increase of cholesterol metabolism. stimulation of serum protein synthesis, immunomodulatory effects. To explain these pharmacological actions, it is thought that ginseng saponins should be metabolized by human intestinal bacteria after they are orally administered. (omitted)

  • PDF