• Title/Summary/Keyword: intestinal cell

Search Result 638, Processing Time 0.06 seconds

Stress-induced Changes of Taurine Transporter Activity in the Human Colon Carcinoma Cell Line(HT-29)* (스트레스를 유발시킨 인체 소장상피세포주(HT-29) 모델에서 타우린수송체 활성의 변화*)

  • 윤미영;박성연;박태선
    • Journal of Nutrition and Health
    • /
    • v.34 no.2
    • /
    • pp.150-157
    • /
    • 2001
  • Intestinal absorption of dietary taurine is one of the regulatory component maintaining taurine homeostasis along with renal reabsorption, bile acid conjugation and secretion, and de nobo synthesis of taurine in mammals. Recent observations of decreased enterocytic levels of taurine in response to trauma, infection and surgical insults, postulate the possibility that intestinal taurine absorption might be impaired in such stressed conditions. The aim of the present study was to evaluate changes in enterocytic taurine transporter activity using the human intestinal colon carcinoma cell line, HT-29, in various stress-induced conditions. Pretreatment of the HT-29 cells with dexamethasone, a stress hormone(0.1,1,10 or 100$\mu$M) for 3 hrs, or with E coli heat-stable enterotoxin(10, 100, or 200nM) for 30 minutes in order to induce the condition of enterotoxigenic infection did not influence taurine uptake as compared to the value found in control cells. In contrast, pretreatment of the cells with cholera toxin(10, 100, 500, or 1000ng/ml)for 3hr or 24hr significantly decreased taurine uptake by HT-29 cells to 40~50% of the value found in untreated control cells. Kinetic studies of the taurine transporter activity were conducted in control and cholera toxin treated HT-29 cells with varying taurine concentrations(2~60$\mu$M) in the uptake medium. Pretreatment of the cells with cholera toxin(100ng/ml) for 3hr did not influence the Vmax, but resulted in a 55% increase in the Michaelis-Menten constant(Km) of the taurine transporter compared to those in control cells. These results suggest that cholera toxin-induced reduction in taurine transporter activity in HT-29 cells is associated with decreased affinity of the taurine transporter without altering the amount of transporter protein. Intestinal taurine absorption appears to be reduced in the condition of water-borne diseases caused by bacteria such as V. cholerae. This might influence the taurine status of infants and young children more readily, an age group in which the prevalence of intestinal infection is high and the role of intestinal absorption is crucial for maintaining the body taurine pool. (Korean J Nutrition 34(2) : 150-157, 2001)

  • PDF

IPA and its precursors differently modulate the proliferation, differentiation, and integrity of intestinal epithelial cells

  • Shamila Ismael;Catarina Rodrigues ;Gilberto Maia Santos ;Ines Castela ;Ines Barreiros-Mota ;Maria Joao Almeida ;Conceicao Calhau ;Ana Faria ;Joao Ricardo Araujo
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.616-630
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Indole-3-propionic acid (IPA) is a tryptophan-derived microbial metabolite that has been associated with protective effects against inflammatory and metabolic diseases. However, there is a lack of knowledge regarding the effects of IPA under physiological conditions and at the intestinal level. MATERIALS/METHODS: Human intestinal epithelial Caco-2 cells were treated for 2, 24, and/or 72 h with IPA or its precursors - indole, tryptophan, and propionate - at 1, 10, 100, 250, or 500 μM to assess cell viability, integrity, differentiation, and proliferation. RESULTS: IPA induced cell proliferation and this effect was associated with a higher expression of extracellular signal-regulated kinase 2 (ERK2) and a lower expression of c-Jun. Although indole and propionate also induced cell proliferation, this involved ERK2 and c-Jun independent mechanisms. On the other hand, both tryptophan and propionate increased cell integrity and reduced the expression of claudin-1, whereas propionate decreased cell differentiation. CONCLUSIONS: In conclusion, these findings suggested that IPA and its precursors distinctly contribute to the proliferation, differentiation, and barrier function properties of human intestinal epithelial cells. Moreover, the pro-proliferative effect of IPA in intestinal epithelial cells was not explained by its precursors and is rather related to its whole chemical structure. Maintaining IPA at physiological levels, e.g., through IPA-producing commensal bacteria, may be important to preserve the integrity of the intestinal barrier and play an integral role in maintaining metabolic homeostasis.

Papiliocin, an antimicrobial peptide, rescues hyperoxia-induced intestinal injury

  • Kim, Seong Ryul;Park, Seung-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.43 no.2
    • /
    • pp.94-98
    • /
    • 2021
  • Reactive oxygen species (ROS) induce a variety of cellular responses, such as proliferation, differentiation, senescence, and apoptosis. Intestinal epithelial cells are continuously exposed to ROS, and excessive generation of ROS severely damages cells via oxidative stress. Pro-inflammatory cytokines may lead to intestinal inflammation and damage by inducing excessive ROS generation. In this study, we showed that papiliocin, an antimicrobial peptide, significantly inhibited ROS production, without affecting cell viability. Moreover, TNF-α and IL-6 expression was decreased in the intestinal epithelial cells. The activity of papiliocin may significantly contribute to preserving the integrity of the intestinal mucosa against oxidative damage and inflammation-related disorders.

Aqueous Extract of Schizandra chinensis Suppresses Dextran Sulfate Sodiuminduced Generation of IL-8 and ROS in the Colonic Epithelial Cell Line HT-29

  • Lee, Young-Mi;Lee, Kang-Soo;Kim, Dae-Ki
    • Natural Product Sciences
    • /
    • v.15 no.4
    • /
    • pp.185-191
    • /
    • 2009
  • Intestinal epithelial cells (IEC) play an important role in the mucosal immune system. IEC-derived mediators of inflammatory cascades play a principal role in the development of colon inflammation. The aim of this study was to investigate the inhibitory effect of aqueous extracts of Schizandra chinensis fruits (SC-Ex) on the production of inflammatory mediators by the human colonic epithelial cells. HT-29 cells were stimulated with dextran sulfate sodium in the presence or absence of SC-Ex to examine the cytoprotection and production of IL-8 and reactive oxygen species (ROS). It was shown that dextran sulfate sodium (DSS) caused the reduction of cell viability and production of IL-8 and ROS in DSS-treated HT-29 cells. We observed that the treatment of SC-Ex protected significantly cell proliferation from DSS-induced damage in dose-dependent manner. SC-Ex (10 and 100 ${\mu}g$/ml) also suppressed DSS-induced production of IL-8 mRNA and protein. Moreover, DSS-induced ROS production was inhibited markedly by the treatment of 100 ${\mu}g$/ml SC-Ex. These results suggest that SC-Ex has the protective effects on DSS-induced cell damage and the release of inflammatory mediators in the intestinal epithelial cells.

Segmented Filamentous Bacteria Induce Divergent Populations of Antigen-Specific CD4 T Cells in the Small Intestine

  • Yi, Jaeu;Jung, Jisun;Han, Daehee;Surh, Charles D.;Lee, You Jeong
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.228-236
    • /
    • 2019
  • CD4 T cells differentiate into $ROR{\gamma}t/IL$-17A-expressing cells in the small intestine following colonization by segmented filamentous bacteria (SFB). However, it remains unclear whether SFB-specific CD4 T cells can differentiate directly from naïve precursors, and whether their effector differentiation is solely directed towards the Th17 lineage. In this study, we used adoptive T cell transfer experiments and showed that naïve CD4 T cells can migrate to the small intestinal lamina propria (sLP) and differentiate into effector T cells that synthesize IL-17A in response to SFB colonization. Using single cell RT-PCR analysis, we showed that the progenies of SFB responding T cells are not uniform but composed of transcriptionally divergent populations including Th1, Th17 and follicular helper T cells. We further confirmed this finding using in vitro culture of SFB specific intestinal CD4 T cells in the presence of cognate antigens, which also generated heterogeneous population with similar features. Collectively, these findings indicate that a single species of intestinal bacteria can generate a divergent population of antigen-specific effector CD4 T cells, rather than it provides a cytokine milieu for the development of a particular effector T cell subset.

Berberine Prevents Intestinal Mucosal Barrier Damage During Early Phase of Sepsis in Rat through the Toll-Like Receptors Signaling Pathway

  • Li, Guo-Xun;Wang, Xi-Mo;Jiang, Tao;Gong, Jian-Feng;Niu, Ling-Ying;Li, Ning
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Our previous study has shown berberine prevents damage to the intestinal mucosal barrier during early phase of sepsis in rat through mechanisms independent of the NOD-like receptors signaling pathway. In this study, we explored the regulatory effects of berberine on Toll-like receptors during the intestinal mucosal damaging process in rats. Male Sprague-Dawlay (SD) rats were treated with berberine for 5 d before undergoing cecal ligation and puncture (CLP) to induce polymicrobial sepsis. The expression of Toll-like receptor 2 (TLR 2), TLR 4, TLR 9, the activity of nuclear factor-kappa B ($NF-{\kappa}B$), the levels of selected cytokines and chemokines, percentage of cell death in intestinal epithelial cells, and mucosal permeability were investigated at 0, 2, 6, 12 and 24 h after CLP. Results showed that the tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) level were significantly lower in berberine-treated rats compared to the control animals. Conversely, the expression level of tight junction proteins, percentage of cell death in intestinal epithelial cells and the mucosal permeability were significantly higher in berberine-treated rats. The mRNA expression of TLR 2, TLR 4, and TLR 9 were significantly affected by berberine treatment. Our results indicate that pretreatment with berberine attenuates tissue injury and protects the intestinal mucosal barrier in early phase of sepsis and this may possibly have been mediated through the TLRs pathway.

The Chemical Characteristics and Immune-Modulating Activity of Polysaccharides Isolated from Cold-Brew Coffee

  • Shin, Kwang-Soon
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.2
    • /
    • pp.100-106
    • /
    • 2017
  • To elucidate new biological ingredients in cold-brew coffee extracted with cold water, crude polysaccharide (CCP-0) was isolated by ethanol precipitation, and its immune-stimulating activities were assayed. CCP-0 mainly comprised galactose (53.6%), mannose (15.7%), arabinose (11.9%), and uronic acid (12.4%), suggesting that it might exist as a mixture of galactomannan and arabinogalactan. CCP-0 significantly increased cell proliferation on both murine peritoneal macrophages and splenocytes in a dose dependent manner. CCP-0 also significantly augmented nitric oxide and reactive oxygen species production by murine peritoneal macrophages. In addition, macrophages stimulated by CCP-0 enhanced production of various cytokines such as tumor necrosis factor-${\alpha}$, interleukin (IL)-6, and IL-12. In an in vitro assay for intestinal immune-modulating activity, CCP-0 showed higher bone-marrow cell-proliferation activity through Peyer's patch cells at $100{\mu}g/mL$ than the negative control. These results suggest that CCP-0 may potentially enhance macrophage functions and the intestinal immune system.

Effects of anti-allergic drugs on intestinal mastocytosis and worm expulsion of rats infected with Neodiplostomum seoulense

  • Shin, Eun-Hee;Kim, Tae-Heung;Hong, Sung-Jong;Park, Jae-Hwan;Guk, Sang-Mee;Chai, Jong-Yil
    • Parasites, Hosts and Diseases
    • /
    • v.41 no.2
    • /
    • pp.81-87
    • /
    • 2003
  • The effects of anti-allergic drugs on intestinal mastocytosis and the expulsion of Neodiplostomum seoulense were observed in Sprague-Dawley rats, after oral infection with 500 metacercariae. The drugs used were hydroxyzine (a histamine receptor H$_1$ blocker), cimetidine (a H$_2$ blocker), cyclosporin-A (a helper T-cell suppressant), and prednisolone (a T- and B-cell suppressant). Infected, but untreated controls, and uninfected controls, were prepared. Worm recovery rate and intestinal mastocytosis were measured on weeks 1, 2, 3, 5, and 7 post-infection. Compared with the infected controls, worm expulsion was significantly (P < 0.05) delayed in hydroxyzine- and cimetidine-treated rats, despite mastocytosis being equally marked in the duodenum of all three groups. In the cyclosporin-A- and prednisolone-treated groups, mastocytosis was suppressed, but worm expulsion was only slightly delayed, without statistical significance. Our results suggest that binding of histamine to its receptors on intestinal smooth muscles is more important in terms of the expulsion of N. seoulense from rats than the levels of histamine alone, or mastocytosis.

IL-17 and IL-17C Signaling Protects the Intestinal Epithelium against Diisopropyl Fluorophosphate Exposure in an Acute Model of Gulf War Veterans' Illnesses

  • Kristen M. Patterson;Tyler G. Vajdic;Gustavo J. Martinez;Axel G. Feller;Joseph M. Reynolds
    • IMMUNE NETWORK
    • /
    • v.21 no.5
    • /
    • pp.35.1-35.16
    • /
    • 2021
  • Gulf War Veterans' Illnesses (GWI) encompasses a broad range of unexplained symptomology specific to Veterans of the Persian Gulf War. Gastrointestinal (GI) distress is prominent in veterans with GWI and often presents as irritable bowel syndrome (IBS). Neurotoxins, including organophosphorus pesticides and sarin gas, are believed to have contributed to the development of GWI, at least in a subset of Veterans. However, the effects of such agents have not been extensively studied for their potential impact to GI disorders and immunological stability. Here we utilized an established murine model of GWI to investigate deleterious effects of diisopropyl fluorophosphate (DFP) exposure on the mucosal epithelium in vivo and in vitro. In vivo, acute DFP exposure negatively impacts the mucosal epithelium by reducing tight junction proteins and antimicrobial peptides as well as altering intestinal microbiome composition. Furthermore, DFP treatment reduced the expression of IL-17 in the colonic epithelium. Conversely, both IL-17 and IL-17C treatment could combat the negative effects of DFP and other cholinesterase inhibitors in murine intestinal organoid cells. Our findings demonstrate that acute exposure to DFP can result in rapid deterioration of mechanisms protecting the GI tract from disease. These results are relevant to suspected GWI exposures and could help explain the propensity for GI disorders in GWI Veterans.

Curcumin utilizes the anti-inflammatory response pathway to protect the intestine against bacterial invasion

  • Cho, Jin Ah;Park, Eunmi
    • Nutrition Research and Practice
    • /
    • v.9 no.2
    • /
    • pp.117-122
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Curcumin, a major component of the Curcuma species, contains antioxidant and anti-inflammatory properties. Although it was found to induce apoptosis in cancer cells, the functional role of curcumin as well as its molecular mechanism in anti-inflammatory response, particularly in intestinal cells, has been less investigated. The intestine epithelial barrier is the first barrier and the most important location for the substrate coming from the lumen of the gut. SUBJECTS/METHODS: We administered curcumin treatment in the human intestinal epithelial cell lines, T84 and Caco-2. We examined endoplasmic reticulum (ER) stress response by thapsigargin, qPCR of XBP1 and BiP, electrophysiology by wild-type cholera toxin in the cells. RESULTS: In this study, we showed that curcumin treatment reduces ER stress and thereby decreases inflammatory response in human intestinal epithelial cells. In addition, curcumin confers protection without damaging the membrane tight junction or actin skeleton change in intestine epithelial cells. Therefore, curcumin treatment protects the gut from bacterial invasion via reduction of ER stress and anti-inflammatory response in intestinal epithelial cells. CONCLUSIONS: Taken together, our data demonstrate the important role of curcumin in protecting the intestine by modulating ER stress and inflammatory response post intoxication.