DOI QR코드

DOI QR Code

IPA and its precursors differently modulate the proliferation, differentiation, and integrity of intestinal epithelial cells

  • Shamila Ismael (Nutricao e Metabolismo, NOVA Medical School - Faculdade de Ciencias Medicas (NMS - FCM), Universidade NOVA de Lisboa) ;
  • Catarina Rodrigues (Nutricao e Metabolismo, NOVA Medical School - Faculdade de Ciencias Medicas (NMS - FCM), Universidade NOVA de Lisboa) ;
  • Gilberto Maia Santos (Nutricao e Metabolismo, NOVA Medical School - Faculdade de Ciencias Medicas (NMS - FCM), Universidade NOVA de Lisboa) ;
  • Ines Castela (Nutricao e Metabolismo, NOVA Medical School - Faculdade de Ciencias Medicas (NMS - FCM), Universidade NOVA de Lisboa) ;
  • Ines Barreiros-Mota (Nutricao e Metabolismo, NOVA Medical School - Faculdade de Ciencias Medicas (NMS - FCM), Universidade NOVA de Lisboa) ;
  • Maria Joao Almeida (Nutricao e Metabolismo, NOVA Medical School - Faculdade de Ciencias Medicas (NMS - FCM), Universidade NOVA de Lisboa) ;
  • Conceicao Calhau (Nutricao e Metabolismo, NOVA Medical School - Faculdade de Ciencias Medicas (NMS - FCM), Universidade NOVA de Lisboa) ;
  • Ana Faria (Nutricao e Metabolismo, NOVA Medical School - Faculdade de Ciencias Medicas (NMS - FCM), Universidade NOVA de Lisboa) ;
  • Joao Ricardo Araujo (Nutricao e Metabolismo, NOVA Medical School - Faculdade de Ciencias Medicas (NMS - FCM), Universidade NOVA de Lisboa)
  • Received : 2022.10.26
  • Accepted : 2023.03.02
  • Published : 2023.08.01

Abstract

BACKGROUND/OBJECTIVES: Indole-3-propionic acid (IPA) is a tryptophan-derived microbial metabolite that has been associated with protective effects against inflammatory and metabolic diseases. However, there is a lack of knowledge regarding the effects of IPA under physiological conditions and at the intestinal level. MATERIALS/METHODS: Human intestinal epithelial Caco-2 cells were treated for 2, 24, and/or 72 h with IPA or its precursors - indole, tryptophan, and propionate - at 1, 10, 100, 250, or 500 μM to assess cell viability, integrity, differentiation, and proliferation. RESULTS: IPA induced cell proliferation and this effect was associated with a higher expression of extracellular signal-regulated kinase 2 (ERK2) and a lower expression of c-Jun. Although indole and propionate also induced cell proliferation, this involved ERK2 and c-Jun independent mechanisms. On the other hand, both tryptophan and propionate increased cell integrity and reduced the expression of claudin-1, whereas propionate decreased cell differentiation. CONCLUSIONS: In conclusion, these findings suggested that IPA and its precursors distinctly contribute to the proliferation, differentiation, and barrier function properties of human intestinal epithelial cells. Moreover, the pro-proliferative effect of IPA in intestinal epithelial cells was not explained by its precursors and is rather related to its whole chemical structure. Maintaining IPA at physiological levels, e.g., through IPA-producing commensal bacteria, may be important to preserve the integrity of the intestinal barrier and play an integral role in maintaining metabolic homeostasis.

Keywords

Acknowledgement

This work was supported by ERDF through the operation POCI-01-0145-ERDF-007746 funded by the Programa Operacional Competitividade e Internacionalizacao - COMPETE2020 and by FCT - Fundacao para a Ciencia e a Tecnologia, IP national support through CINTESIS, R&D Unit (UIDB/4255/2020), CHRC (UIDP/04923/2020 and UIDB/04923/2020), through the project reference PTDC/BAA-AGR/7419/2020 and the 2020.06333.BD.

References

  1. Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome 2019;7:91.
  2. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 2014;14:141-53. https://doi.org/10.1038/nri3608
  3. Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020;17:223-37. https://doi.org/10.1038/s41575-019-0258-z
  4. Agus A, Clement K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 2021;70:1174-82. https://doi.org/10.1136/gutjnl-2020-323071
  5. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 2018;57:1-24. https://doi.org/10.1007/s00394-017-1445-8
  6. Neis EP, Dejong CH, Rensen SS. The role of microbial amino acid metabolism in host metabolism. Nutrients 2015;7:2930-46. https://doi.org/10.3390/nu7042930
  7. Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun 2018;9:3294.
  8. Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 2018;23:716-24. https://doi.org/10.1016/j.chom.2018.05.003
  9. Bansal T, Alaniz RC, Wood TK, Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci U S A 2010;107:228-33. https://doi.org/10.1073/pnas.0906112107
  10. Sun M, Ma N, He T, Johnston LJ, Ma X. Tryptophan (Trp) modulates gut homeostasis via aryl hydrocarbon receptor (AhR). Crit Rev Food Sci Nutr 2020;60:1760-8. https://doi.org/10.1080/10408398.2019.1598334
  11. Jennis M, Cavanaugh CR, Leo GC, Mabus JR, Lenhard J, Hornby PJ. Microbiota-derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo. Neurogastroenterol Motil 2018;30:e13178.
  12. Hyland NP, Cavanaugh CR, Hornby PJ. Emerging effects of tryptophan pathway metabolites and intestinal microbiota on metabolism and intestinal function. Amino Acids 2022;54:57-70. https://doi.org/10.1007/s00726-022-03123-x
  13. Dodd D, Spitzer MH, Van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, Le A, Cowan TM, Nolan GP, Fischbach MA, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 2017;551:648-52. https://doi.org/10.1038/nature24661
  14. Alexeev EE, Lanis JM, Kao DJ, Campbell EL, Kelly CJ, Battista KD, Gerich ME, Jenkins BR, Walk ST, Kominsky DJ, et al. Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin-10 receptor. Am J Pathol 2018;188:1183-94. https://doi.org/10.1016/j.ajpath.2018.01.011
  15. de Mello VD, Paananen J, Lindstrom J, Lankinen MA, Shi L, Kuusisto J, Pihlajamaki J, Auriola S, Lehtonen M, Rolandsson O, et al. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci Rep 2017;7:46337.
  16. Tuomainen M, Lindstrom J, Lehtonen M, Auriola S, Pihlajamaki J, Peltonen M, Tuomilehto J, Uusitupa M, de Mello VD, Hanhineva K. Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutr Diabetes 2018;8:35.
  17. Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, Qiu Z, Maher L, Redinbo MR, Phillips RS, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 2014;41:296-310. https://doi.org/10.1016/j.immuni.2014.06.014
  18. Garg A, Zhao A, Erickson SL, Mukherjee S, Lau AJ, Alston L, Chang TK, Mani S, Hirota SA. Pregnane X receptor activation attenuates inflammation-associated intestinal epithelial barrier dysfunction by inhibiting cytokine-induced myosin light-chain kinase expression and c-Jun N-terminal kinase 1/2 activation. J Pharmacol Exp Ther 2016;359:91-101. https://doi.org/10.1124/jpet.116.234096
  19. Konopelski P, Konop M, Gawrys-Kopczynska M, Podsadni P, Szczepanska A, Ufnal M. Indole-3-propionic acid, a tryptophan-derived bacterial metabolite, reduces weight gain in rats. Nutrients 2019;11:591.
  20. Abildgaard A, Elfving B, Hokland M, Wegener G, Lund S. The microbial metabolite indole-3-propionic acid improves glucose metabolism in rats, but does not affect behaviour. Arch Physiol Biochem 2018;124:306-12. https://doi.org/10.1080/13813455.2017.1398262
  21. Valenzano MC, DiGuilio K, Mercado J, Teter M, To J, Ferraro B, Mixson B, Manley I, Baker V, Moore BA, et al. Remodeling of tight junctions and enhancement of barrier integrity of the CACO-2 intestinal epithelial cell layer by micronutrients. PLoS One 2015;10:e0133926.
  22. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  23. Herminghaus A, Eberhardt R, Truse R, Schulz J, Bauer I, Picker O, Vollmer C. Nitroglycerin and iloprost improve mitochondrial function in colon homogenate without altering the barrier integrity of Caco-2 monolayers. Front Med (Lausanne) 2018;5:291.
  24. Shin J, Carr A, Corner GA, Togel L, Davalos-Salas M, Tran H, Chueh AC, Al-Obaidi S, Chionh F, Ahmed N, et al. The intestinal epithelial cell differentiation marker intestinal alkaline phosphatase (ALPi) is selectively induced by histone deacetylase inhibitors (HDACi) in colon cancer cells in a Kruppel-like factor 5 (KLF5)-dependent manner. J Biol Chem 2014;289:25306-16. https://doi.org/10.1074/jbc.M114.557546
  25. Calhau C, Martel F, Hipolito-Reis C, Azevedo I. Effect of thiamine on 3H-MPP+ uptake by Caco-2 cells. Pharmacol Res 2003;48:579-84. https://doi.org/10.1016/S1043-6618(03)00176-2
  26. Goncalves P, Gregorio I, Catarino TA, Martel F. The effect of oxidative stress upon the intestinal epithelial uptake of butyrate. Eur J Pharmacol 2013;699:88-100. https://doi.org/10.1016/j.ejphar.2012.11.029
  27. Klingbeil E, de La Serre CB. Microbiota modulation by eating patterns and diet composition: impact on food intake. Am J Physiol Regul Integr Comp Physiol 2018;315:R1254-60. https://doi.org/10.1152/ajpregu.00037.2018
  28. Lin R, Liu W, Piao M, Zhu H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids 2017;49:2083-90. https://doi.org/10.1007/s00726-017-2493-3
  29. Rodriguez-Romero JJ, Duran-Castaneda AC, Cardenas-Castro AP, Sanchez-Burgos JA, Zamora-Gasga VM, Sayago-Ayerdi SG. What we know about protein gut metabolites: Implications and insights for human health and diseases. Food Chem X 2021;13:100195.
  30. Cussotto S, Delgado I, Anesi A, Dexpert S, Aubert A, Beau C, Forestier D, Ledaguenel P, Magne E, Mattivi F, et al. Tryptophan metabolic pathways are altered in obesity and are associated with systemic inflammation. Front Immunol 2020;11:557.
  31. Zhao ZH, Xin FZ, Xue Y, Hu Z, Han Y, Ma F, Zhou D, Liu XL, Cui A, Liu Z, et al. Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats. Exp Mol Med 2019;51:1-14. https://doi.org/10.1038/s12276-019-0304-5
  32. Lee DM, Ecton KE, Trikha SR, Wrigley SD, Thomas KN, Battson ML, Wei Y, Johnson SA, Weir TL, Gentile CL. Microbial metabolite indole-3-propionic acid supplementation does not protect mice from the cardiometabolic consequences of a Western diet. Am J Physiol Gastrointest Liver Physiol 2020;319:G51-62. https://doi.org/10.1152/ajpgi.00375.2019
  33. Kaufmann SH. Indole propionic acid: a small molecule links between gut microbiota and tuberculosis. Antimicrob Agents Chemother 2018;62:e00389-18.
  34. Verhoeckx K, Cotter P, Lopez-Exposito I, Kleiveland C, Lea T, Mackie A, et al. The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models. Heidelberg: Springer International Publishing; 2015.
  35. Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 2009;8:1168-75. https://doi.org/10.4161/cc.8.8.8147
  36. Mechta-Grigoriou F, Gerald D, Yaniv M. The mammalian Jun proteins: redundancy and specificity. Oncogene 2001;20:2378-89. https://doi.org/10.1038/sj.onc.1204381
  37. Yin J, Sheng B, Qiu Y, Yang K, Xiao W, Yang H. Role of AhR in positive regulation of cell proliferation and survival. Cell Prolif 2016;49:554-60. https://doi.org/10.1111/cpr.12282
  38. Krautkramer KA, Fan J, Backhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol 2021;19:77-94. https://doi.org/10.1038/s41579-020-0438-4
  39. Li J, Zhang L, Wu T, Li Y, Zhou X, Ruan Z. Indole-3-propionic acid improved the intestinal barrier by enhancing epithelial barrier and mucus barrier. J Agric Food Chem 2021;69:1487-95. https://doi.org/10.1021/acs.jafc.0c05205
  40. Poormasjedi-Meibod MS, Jalili RB, Hosseini-Tabatabaei A, Hartwell R, Ghahary A. Immuno-regulatory function of indoleamine 2,3 dioxygenase through modulation of innate immune responses. PLoS One 2013;8:e71044.
  41. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 2002;196:459-68. https://doi.org/10.1084/jem.20020121
  42. Pham HT, Ono M, Hara ES, Nguyen HT, Dang AT, Do HT, Komori T, Tosa I, Hazehara-Kunitomo Y, Yoshioka Y, et al. Tryptophan and kynurenine enhances the stemness and osteogenic differentiation of bone marrow-derived mesenchymal stromal cells in vitro and in vivo. Materials (Basel) 2021;14:208.
  43. Bindels LB, Porporato P, Dewulf EM, Verrax J, Neyrinck AM, Martin JC, Scott KP, Buc Calderon P, Feron O, Muccioli GG, et al. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br J Cancer 2012;107:1337-44. https://doi.org/10.1038/bjc.2012.409
  44. Venegas DP, De Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs) -mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 2019;10:277.
  45. Fu H, Shi YQ, Mo SJ. Effect of short-chain fatty acids on the proliferation and differentiation of the human colonic adenocarcinoma cell line Caco-2. Chin J Dig Dis 2004;5:115-7. https://doi.org/10.1111/j.1443-9573.2004.00167.x
  46. Park BO, Kim SH, Kim JH, Kim SY, Park BC, Han SB, Park SG, Kim JH, Kim S. The short-chain fatty acid receptor GPR43 modulates YAP/TAZ via RhoA. Mol Cells 2021;44:458-67. https://doi.org/10.14348/molcells.2021.0021
  47. Koopmans SJ, Guzik AC, van der Meulen J, Dekker R, Kogut J, Kerr BJ, Southern LL. Effects of supplemental L-tryptophan on serotonin, cortisol, intestinal integrity, and behavior in weanling piglets. J Anim Sci 2006;84:963-71. https://doi.org/10.2527/2006.844963x
  48. Chen M, Liu Y, Xiong S, Wu M, Li B, Ruan Z, Hu X. Dietary l-tryptophan alleviated LPS-induced intestinal barrier injury by regulating tight junctions in a Caco-2 cell monolayer model. Food Funct 2019;10:2390-8. https://doi.org/10.1039/C9FO00123A
  49. Feng Y, Wang Y, Wang P, Huang Y, Wang F. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy. Cell Physiol Biochem 2018;49:190-205. https://doi.org/10.1159/000492853
  50. Adesina PA, Isayama K, Sitolo GC, Yamamoto Y, Suzuki T. Propionate and dietary fermentable fibers upregulate intestinal heat shock protein70 in intestinal Caco-2 cells and mouse colon. J Agric Food Chem 2021;69:8460-70. https://doi.org/10.1021/acs.jafc.1c03036
  51. van der Hee B, Wells JM. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol 2021;29:700-12. https://doi.org/10.1016/j.tim.2021.02.001
  52. Pope JL, Ahmad R, Bhat AA, Washington MK, Singh AB, Dhawan P. Claudin-1 overexpression in intestinal epithelial cells enhances susceptibility to adenamatous polyposis coli-mediated colon tumorigenesis. Mol Cancer 2014;13:167.
  53. Garcia-Hernandez V, Quiros M, Nusrat A. Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Ann N Y Acad Sci 2017;1397:66-79. https://doi.org/10.1111/nyas.13360
  54. Shen Z, Song W, Qian L, Zhu J, Li Y, Li M, Zhang T, Zhao W, Zhou Y, Yang X. Effect of claudin 1 on cell proliferation, migration and apoptosis in human cervical squamous cell carcinoma. Oncol Rep 2021;45:606-18. https://doi.org/10.3892/or.2020.7889
  55. Filippone A, Lanza M, Campolo M, Casili G, Paterniti I, Cuzzocrea S, Esposito E. The anti-inflammatory and antioxidant effects of sodium propionate. Int J Mol Sci 2020;21:3026.
  56. Sorgdrager FJ, Naude PJ, Kema IP, Nollen EA, Deyn PP. Tryptophan metabolism in inflammaging: from biomarker to therapeutic target. Front Immunol 2019;10:2565.
  57. Zhang Y, Chen H, Zhu W, Yu K. Cecal infusion of sodium propionate promotes intestinal development and jejunal barrier function in growing pigs. Animals (Basel) 2019;9:284.