• Title/Summary/Keyword: interval system

Search Result 2,378, Processing Time 0.034 seconds

Analysis on Size-Interval Based Dispatching System for Multi-Class Job Model (Multi-Class Job 모델을 위한 Size-Interval 기반 할당 시스템 분석)

  • Moon, Yong-Hyuk;Kwon, Hyeok-Chan;Youn, Chan-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.163-164
    • /
    • 2011
  • 본고에서는 Multi-class Jobs을 Dispatching system 에서 처리하는 경우, Cost performance 을 점근적으로 해석하는 과정에 대해 논의한다. 구체적으로, Job 할당 시스템은 Size-Interval 기반의 스케줄링 기법을 이용하고, Resource failure 에 대비하여 Job duplication 전략을 활용하는 것으로 가정 한다.

The Effects of PRF and Slot Interval on the PPM-Based Ultra Wide-Band Systems (PPM-기반의 UWB 시스템에 대한 PRF와 슬롯 시간의 영향)

  • 김성준;임성빈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12C
    • /
    • pp.1192-1199
    • /
    • 2003
  • In this paper, we investigate the effect of pulse repetition frequency (PRF) and slot interval on the throughput performance of the ultra wide band (UWB) wireless communication system in multi-path channels, and based on these observations, a data throughput control using PRF and slot interval is proposed for maximizing the effective throughput. Recently, due to many desirable features of the UWB system, it has drawn much attention especially for short-range high-speed data transmission. The UWB system has two parameters to determine its data throughput; pulse repetition frequency and slot interval. In the multi-path channel with additive white Gaussian noise, the UWB system suffers from the inter-pulse interference (IPI) and noise, which result in degradation of system performance. The UWB system can vary the two parameters to maintain and/or improve the system performance. In this paper, we demonstrate the effects of the two parameters on the data throughput of the UWB system in various multi-path indoor channels through computer simulation, and show that the variable data rate approach designed based on the observations is superior to the fixed data rate one in terms of effective throughput performance.

Train interval control and train-centric distributed interlocking algorithm for autonomous train driving control system (열차자율주행제어시스템을 위한 간격제어와 차상중심 분산형 연동 알고리즘)

  • Oh, Sehchan;Kim, Kyunghee;Choi, Hyeonyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.1-9
    • /
    • 2016
  • Train control systems have changed from wayside electricity-centric to onboard communications-centric. The latest train control system, the CBTC system, has high efficiency for interval control based on two-way radio communications between the onboard and wayside systems. However, since the wayside system is the center of control, the number of input trains to allow a wayside system is limited, and due to the cyclic-path control flows between onboard and wayside systems, headway improvement is limited. In this paper, we propose a train interval-control and train-centric distributed interlocking algorithm for an autonomous train-driving control system. Because an autonomous train-driving control system performs interval and branch control onboard, both tracks and switches are shared resources as well as semaphore elements. The proposed autonomous train-driving control performs train interval control via direct communication between trains or between trains and track-side apparatus, instead of relying on control commands from ground control systems. The proposed interlocking algorithm newly defines the semaphore scheme using a unique key for the shared resource, and a switch that is not accessed at the same time by the interlocking system within each train. The simulated results show the proposed autonomous train-driving control system improves interval control performance, and safe train control is possible with a simplified interlocking algorithm by comparing the proposed train-centric distributed interlocking algorithm and various types of interlock logic performed in existing interlocking systems.

Method of Recurrence Interval Estimation for Fault Activity from Age Dating Data (연대측정자료를 이용한 단층활동주기 산정 방법)

  • 최원학
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.74-80
    • /
    • 2001
  • The estimation of recurrence interval for fault activity and earthquake is an important input parameter for seismic hazard assessment. In this study, the methods of recurrences interval estimation were reviewed and tentative calculation was performed for age dating data which have uncertainty. Age dating data come from previous studies of Ulsan fault system which is a well developed lineament in the southeastern part of korean Peninsula. Age dating for fault gouges, parent rocks, Quaternary sediments and veins were carried out by several researchers through various methods. Recurrence interval for fault activity was estimated on the basis of the age dating data of minor fault gouge and sediments during past 3Ma. The estimated recurrence interval was about 430-500 ka. Exact estimation of recurrence interval for fault activity need to compile more geological data and fault characteristics such as fault length, amount of displacement, slip rate and accurate fault movement age. In the future, the methods and results of fault recurrence interval estimation should be considered for establishing the criteria for domestic active fault definition.

  • PDF

A Dynamic Checkpoint Scheduling Scheme for Fault Tolerant Distributed Computing Systems (결함 내성 분산 시스템에서의 동적 검사점 스케쥴링 기법)

  • Park, Tae-Soon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.2
    • /
    • pp.75-86
    • /
    • 2002
  • The selection of the optimal checkpointing interval has been a very critical issue to implement a checkpointing recovery scheme for the fault tolerant distributed system. This paper presents a new scheme that allows a process to select the proper checkpointing interval dynamically. A process in the system evaluates the cost of checkpointing and possible rollback for each checkpointing interval and selects the proper time interval for the next checkpointing Unlike the other scheme, the overhead incurred by both of the checkpointing and rollback activities are considered for the cost evaluation and current communication pattern is reflected in the selection of the checkpointing interval. Moreover, the proposed scheme requires no extra message communication for the checkpointing interval selection and can easily be incorporated into the existing checkpointing coordination schemes.

Optimal Maintenance Scheduling in a Two Identical Component Parallel Redundant System Subject to Exponential Power Hazards

  • El-Damcese, M.A.;Helmy, A.N.
    • International Journal of Reliability and Applications
    • /
    • v.9 no.2
    • /
    • pp.141-152
    • /
    • 2008
  • This paper presents equations, which can be used to evaluate the failure frequency and the failure rate of a two identical component parallel redundant system in which each component can operate in its wear out period, and the failure rate of each component is exponential power distribution. The optimum maintenance interval for a two identical component parallel redundant system can be obtained using these equations. The proposed approach is presented and illustrated using several numerical examples. The optimum maintenance interval for each component in a two identical parallel redundant system will depend on factors such as: failure rate, repair and maintenance times of each component in the parallel redundant systems.

  • PDF

Stability of Interval Time-delayed Linear Systems using a Switched System Approach (전환 시스템 접근법을 이용한 구간 시간지연 선형 시스템의 안정성)

  • Kim, Joo-Kyeong;Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.673-678
    • /
    • 2013
  • This paper considers the stability of linear systems having an interval time-varying delay using a switched system approach. The time-delay system is converted to the switched system equivalently, and then a stability criterion in the form of linear matrix inequality(LMI) is derived by using a parameter dependent Lyapunov-Krosovskii function(PD-LKF). In constructing a PD-LKF, the decomposition is employed for delay free intervals, and the reduction of conservatism is shown analytically as the number of decomposition increases. Finally, two well-known numerical examples are given to show the reduction of conservatism compared to the recent results.

Reliability Estimation of Series-Parallel Systems Using Component Failure Data (부품의 고장자료를 이용하여 직병렬 시스템의 신뢰도를 추정하는 방법)

  • Kim, Kyung-Mee O.
    • IE interfaces
    • /
    • v.22 no.3
    • /
    • pp.214-222
    • /
    • 2009
  • In the early design stage, system reliability must be estimated from life testing data at the component level. Previously, a point estimate of system reliability was obtained from the unbiased estimate of the component reliability after assuming that the number of failed components for a given time followed a binomial distribution. For deriving the confidence interval of system reliability, either the lognormal distribution or the normal approximation of the binomial distribution was assumed for the estimator of system reliability. In this paper, a new estimator is used for the component level reliability, which is biased but has a smaller mean square error than the previous one. We propose to use the beta distribution rather than the lognormal or approximated normal distribution for developing the confidence interval of the system reliability. A numerical example based on Monte Carlo simulation illustrates advantages of the proposed approach over the previous approach.

Headway Calculation and Train Control Algorithm for Performance Improvement in Radio based Train Control System (무선통신기반 열차제어시스템에서의 운전시격 계산과 간격제어 성능개선을 위한 열차간격제어 알고리즘)

  • Oh, Sehchan;Kim, Kyunghee;Lee, Sung-Hoon;Kim, Ja-Young;Quan, Zhong-Hua
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6949-6958
    • /
    • 2015
  • Radio based train control system performs train safe interval control by receiving in realtime the position information of trains driving in the control area of the wayside system and providing onboard system in each train with updated movement authority. The performance of the train control system is evaluated to calculate the minimum operation headway, which reflects the operation characteristics and the characteristics of the train as well as the interval control performance of the train control system. In this paper, we propose the operation headway calculation for radio based train control system and a new train interval control algorithm to improve the operation headway. The proposed headway calculation defines line headway and station headway by the estimation the safety margin distance reflecting the performance of the train control system. Furthermore the proposed Enhanced Train Interval Control(ETIC) algorithm defines a new movement authority including both distance and speed, and improves the train operation headway by using braking distance occurring inevitably in the preceding train. The proposed operation headway calculation is simulated with Korean Radio-based Train Control System(KRTCS) and the simulated result is compared to improved train interval control algorithm. According to the simulated results, the proposed operation headway calculation can be used as performance indicator for radio based train control system, and the improved train control algorithm can improve the line and station headway of the conventional radio based train control system.