• 제목/요약/키워드: interval finite element analysis

검색결과 75건 처리시간 0.021초

콘크리트 슬래브 사교의 휨거동 해석 (Analysis of Bending Behavior of Skew Concrete Slab Bridges)

  • 정성우;정재호;윤순종
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.409-414
    • /
    • 1998
  • In this paper, we present the results of finite element analyses pertaining to the mechanical behavior of simply supported skew concrete slab bridges. To investigate the bending behavior of skew concrete slab three skewed slabs are modelled with different plate aspect ratios. In each modelled skew plate, skew angles are varied from 0$^{\circ}$to 45$^{\circ}$ by 5$^{\circ}$interval. It is found that the support reactions at the obtuse corner are remarkably higher than the other support reactions. In the design of skew slab bridge bearings, the capacity of bearing installed at the obtuse corner should be very high or otherwise the spacing between the bearings at this corner must be adjusted appropriately to resist extra high reactions.

  • PDF

Thermo-optical Analysis and Correction Method for an Optical Window in Low Temperature and Vacuum

  • Ruoyan Wang;Ruihu Ni;Zhishan Gao;Lingjie Wang;Qun Yuan
    • Current Optics and Photonics
    • /
    • 제7권2호
    • /
    • pp.213-221
    • /
    • 2023
  • The optical window, as a part of the collimator system, is the connector between the outside light source and the optical system inside a vacuum tank. The temperature and pressure difference between the two sides of the optical window cause not only thermoelastic deformation, but also refractive-index irregularities. To suppress the influence of these two changes on the performance of the collimator system, thermo-optical analysis is employed. Coefficients that characterize the deformations and refractive-index distributions are derived through finite-element analysis, and then imported into the collimator system using a user-defined surface in ZEMAX. The temperature and pressure difference imposed on the window seriously degrade the system performance of the collimator. A decentered and tilted lens group is designed to correct both field aberrations and the thermal effects of the window. Through lens-interval adjustment of the lens group, the diffraction-limited performance of the collimator can be maintained with a vacuum level of 10-5 Pa and inside temperature ranging from -100 ℃ to 20 ℃.

Free Vibration Analysis of Axisymmetric Conical Shell

  • Choi, Myung-Soo;Yeo, Dong-Jun;Kondou, Takahiro
    • 동력기계공학회지
    • /
    • 제20권2호
    • /
    • pp.5-16
    • /
    • 2016
  • Generally, methods using transfer techniques, like the transfer matrix method and the transfer stiffness coefficient method, find natural frequencies using the sign change of frequency determinants in searching frequency region. However, these methods may omit some natural frequencies when the initial frequency interval is large. The Sylvester-transfer stiffness coefficient method ("S-TSCM") can always obtain all natural frequencies in the searching frequency region even though the initial frequency interval is large. Because the S-TSCM obtain natural frequencies using the number of natural frequencies existing under a searching frequency. In this paper, the algorithm for the free vibration analysis of axisymmetric conical shells was formulated with S-TSCM. The effectiveness of S-TSCM was verified by comparing numerical results of S-TSCM with those of other methods when analyzing free vibration in two computational models: a truncated conical shell and a complete (not truncated) conical shell.

일정진폭하중을 받는 유한 길이 봉의 유한요소해석 (Finite Element Analysis in Finite Length Bar under Constant Amplitude Loading)

  • 황은하
    • 한국전산구조공학회논문집
    • /
    • 제23권5호
    • /
    • pp.525-533
    • /
    • 2010
  • Newmark방법과 같은 직접시간적분법은 시간증분 구간 사이에서 하중이 변하더라도 하중값을 그 시간 구간에서 일정한 하중으로 사용하기 때문에 일정진폭하중과 같은 연속적인 하중함수를 불연속적인 하중함수로 가정하고 수치계산을 수행한다. 따라서 이러한 하중함수의 근사에 따른 오차로 인하여 정확한 수치결과를 계산할 수 없다. 이에 반해, Gurtin의 변분식 에 기초한 유한요소방정식은 하중함수를 시간이력에 대하여 합성적분하여 계산한다. 따라서 시간증분 구간에서 하중이 변하더라도 연속적인 하중함수의 곡선을 따라 가면서 계산하기 때문에 신뢰할 수 있는 수치결과를 구할 수 있다. 본 논문에서는 1차원 막대의 자유단에서 일정진폭하중을 받는 문제를 수치해석하여 Gurtin방법이 Newmark방법 보다 일정진폭하중을 받는 문제에 더 적합한 방법임을 보인다. 또한, Gurtin방법이 일정한 하중을 받는 문제보다 일정진폭하중을 받는 문제에 더 효과적인 방법임을 보인다. Gurtin방법을 FORTRAN으로 프로그래밍하여 해석한 수치결과와 해석용 소프트웨어인 ADINA의 Newmark방법에 의한 수치결과를 비교하여 제시된 수치해의 정확성과 타당성을 검증한다.

필터간격을 고려한 농업용저수지 제체의 침투특성 (Seepage Characteristics of Agricultural Reservoir Embankment Considering Filter Interval)

  • 이영학;이달원
    • 한국농공학회논문집
    • /
    • 제60권1호
    • /
    • pp.1-10
    • /
    • 2018
  • This study analyzed pore water pressure, seepage and leakage quantity, height of seepage and critical hydraulic gradient in order to suggest the seepage characteristics of agricultural reservoir embankment considering filter interval. The seepage characteristics of a deteriorated reservoir embankments were conducted according to the horizontal filter intervals range using three- dimensional finite element analysis. The wider the horizontal filter interval, the higher the pore water pressure increased, and the pore water pressure ratio in the center of the core has a greater effect than the base part. The seepage and leakage quantity appeared largely in the two-dimensional analysis conditions (case 1), where the filter was constructed totally in the longitudinal direction of the embankment, the wider the horizontal filter interval was gradually reduced. The reasonable filter intervals to yield efficient seepage characteristics were within 30 m for the pore water pressure of the core and the height of the seepage line. The stability of the filter installation was able to evaluate the stability of the piping by the critical hydraulic gradient method. The deteriorated reservoir with no filters or decreased functionality can significantly reduce the possibility of piping by simply installing a filter on the downstream slope. In the future, the deteriorated reservoir embankment should be checked for the reservoir remodeling because the core and filter functions have been lost or decreased significantly. In the case of a new installation, the seepage characteristic behavior due to the core and filter changes should be applied to the field after obtaining a reasonable horizontal filter interval that satisfies the safety factor by a three-dimensional analysis.

유한요소법에 의한 결함 주위의 응력분포와 피로크랙의 간섭효과 (Analysis of the stress disribution around flaws and the interaction effects between fatigue cracks by finite element method)

  • 송삼홍;김진봉
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.154-161
    • /
    • 1995
  • In order to analysis of the stress distribution around flaws and the interaction effects between fatigue cracks, stress around micro hole was analyzed by Finite Element Method(F.E.M.) and micro hole specimens were tested using rotary bending fatigue machine and twisting fatigue machine to identify stress effects for fatigue cracks initiating from micro holes and interaction effects between micro holes. The results are as follows : Interaction effects of .sigma. $_{y}$for the micro hole side is larger than the large micro hole side when the interval between micro holes is near. Stress concentration factor increase as the diameter of micro hole becomes smaller. But, stress field of micro hole is smaller than that of large micro hole at h .leq. r (h:depth of micro hole, r:radius of micro hole) and that of large hole is larger than that of small micro hole at h >r expect the small range from micro hole.e.

  • PDF

저하중용 후설치 세트앵커의 전단파괴거동에 관한 매개변수 연구 (A Parameter Study on the Shear Failure Behavior of Post-installed Set Anchor for Light Load)

  • 엄찬희;유승운
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권3호
    • /
    • pp.55-63
    • /
    • 2015
  • 콘크리트용 후설치 세트앵커는 콘크리트가 경화된 후에 설치되는 앵커이며 시공 장비의 발달과 시공의 유연성 및 용이성으로 사용량이 증가하고 있는 실정이다. 전단하중을 받는 앵커는 강재 파괴, 콘크리트 파열파괴, 콘크리트 프라이아웃 파괴 등의 대표적인 파괴모드를 보인다. 본 연구에서는 매입깊이, 연단거리 및 콘크리트 강도를 변수로 한 세트앵커의 실험 및 유한요소 해석 결과를 통하여 콘크리트에 매입된 저하중용 후설치 세트앵커의 전단 파괴거동에 미치는 영향을 규명하는 것을 그 목적으로 한다. 매입깊이 변수의 실험 결과 매입깊이가 얕을수록 콘크리트 강도의 영향이 큰 것으로 나타났다. 연단거리 변수의 실험 결과 동일한 파괴모드를 보이면서 콘크리트 강도의 영향이 크지 않은 것으로 나타났다. 강재 파괴가 발생한 실험 결과를 비교해 보았을 때 콘크리트 강도가 클수록 변위가 상대적으로 더 작게 나타났다.

Time-dependent analysis of slender, tapered reinforced concrete columns

  • de Macedo Wahrhaftig, Alexandre
    • Steel and Composite Structures
    • /
    • 제36권2호
    • /
    • pp.229-247
    • /
    • 2020
  • This study analyzed stresses in concrete and its reinforcement, computing the additional loading transferred by concrete creep. The loading varied from zero, structure exclusively under its self-weight, up to the critical buckling load. The studied structure was a real, tapered, reinforced concrete pole. As concrete is a composite material, homogenizing techniques were used in the calculations. Due to the static indetermination for determining the normal forces acting on concrete and reinforcement, equations that considered the balance of forces and compatibility of displacement on cross-sections were employed. In the mathematical solution used to define the critical buckling load, all the elements of the structural dynamics present in the system were considered, including the column self-weight. The structural imperfections were linearized using the geometric stiffness, the proprieties of the concrete were considered according to the guidelines of the American Concrete Institute (ACI 209R), and the ground was modeled as a set of distributed springs along the foundation length. Critical buckling loads were computed at different time intervals after the structure was loaded. Finite element method results were also obtained for comparison. For an interval of 5000 days, the modulus of elasticity and critical buckling load reduced by 36% and 27%, respectively, compared to an interval of zero days. During this time interval, stress on the reinforcement steel reached within 5% of the steel yield strength. The computed strains in that interval stayed below the normative limit.

철도차량 안전성을 위한 주행 차축의 비파괴 검사주기 평가 (Evaluation of Non Destructive Inspection Interval for Running Safety of Railway Axle)

  • 권석진;이동형;서정원;김재철
    • 한국정밀공학회지
    • /
    • 제31권9호
    • /
    • pp.777-782
    • /
    • 2014
  • Usually, railway axles are designed for infinite life based on endurance limit of the material and the axle is not fractured immediately when a surface crack initiated. The railway axles have been inspected regularly by NDT such as ultrasonic testing, magnetic testing and eddy current testing and so on. Because the axle failure is profoundly influenced by the probability of missing a fatigue crack during an NDT inspection, it is necessary to evaluate the Non Destructive Interval of railway axle. In the present paper, the Non Destructive Interval of railway axle based on fracture mechanics and finite element analysis was investigated. It was shown that the Non Destructive Interval of railway axle can be evaluated using fracture mechanics approach and extended using NDT which a crack can detect clearly.

System identification of a super high-rise building via a stochastic subspace approach

  • Faravelli, Lucia;Ubertini, Filippo;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • 제7권2호
    • /
    • pp.133-152
    • /
    • 2011
  • System identification is a fundamental step towards the application of structural health monitoring and damage detection techniques. On this respect, the development of evolved identification strategies is a priority for obtaining reliable and repeatable baseline modal parameters of an undamaged structure to be adopted as references for future structural health assessments. The paper presents the identification of the modal parameters of the Guangzhou New Television Tower, China, using a data-driven stochastic subspace identification (SSI-data) approach complemented with an appropriate automatic mode selection strategy which proved to be successful in previous literature studies. This well-known approach is based on a clustering technique which is adopted to discriminate structural modes from spurious noise ones. The method is applied to the acceleration measurements made available within the task I of the ANCRiSST benchmark problem, which cover 24 hours of continuous monitoring of the structural response under ambient excitation. These records are then subdivided into a convenient number of data sets and the variability of modal parameter estimates with ambient temperature and mean wind velocity are pointed out. Both 10 minutes and 1 hour long records are considered for this purpose. A comparison with finite element model predictions is finally carried out, using the structural matrices provided within the benchmark, in order to check that all the structural modes contained in the considered frequency interval are effectively identified via SSI-data.