At present, the traditional concrete surface inspection methods based on artificial vision have the problems of high cost and insecurity, while the computer vision methods rely on artificial selection features in the case of sensitive environmental changes and difficult promotion. In order to solve these problems, this paper introduces deep learning technology in the field of computer vision to achieve automatic feature extraction of structural damage, with excellent detection speed and strong generalization ability. The main contents of this study are as follows: (1) A method based on DeepLabV3+ convolutional neural network model is proposed for surface detection of post-earthquake structural damage, including surface damage such as concrete cracks, spaling and exposed steel bars. The key semantic information is extracted by different backbone networks, and the data sets containing various surface damage are trained, tested and evaluated. The intersection ratios of 54.4%, 44.2%, and 89.9% in the test set demonstrate the network's capability to accurately identify different types of structural surface damages in pixel-level segmentation, highlighting its effectiveness in varied testing scenarios. (2) A semantic segmentation model based on DeepLabV3+ convolutional neural network is proposed for the detection and evaluation of post-earthquake structural components. Using a dataset that includes building structural components and their damage degrees for training, testing, and evaluation, semantic segmentation detection accuracies were recorded at 98.5% and 56.9%. To provide a comprehensive assessment that considers both false positives and false negatives, the Mean Intersection over Union (Mean IoU) was employed as the primary evaluation metric. This choice ensures that the network's performance in detecting and evaluating pixel-level damage in post-earthquake structural components is evaluated uniformly across all experiments. By incorporating deep learning technology, this study not only offers an innovative solution for accurately identifying post-earthquake damage in civil engineering structures but also contributes significantly to empirical research in automated detection and evaluation within the field of structural health monitoring.
With a trend of the utilization of computer vision for satellite images, cloud detection using deep learning also attracts attention recently. In this study, we conducted a U-Net cloud detection modeling using SPARCS (Spatial Procedures for Automated Removal of Cloud and Shadow) Cloud Dataset with the image data augmentation and carried out 10-fold cross-validation for an objective assessment of the model. Asthe result of the blind test for 1800 datasets with 512 by 512 pixels, relatively high performance with the accuracy of 0.821, the precision of 0.847, the recall of 0.821, the F1-score of 0.831, and the IoU (Intersection over Union) of 0.723. Although 14.5% of actual cloud shadows were misclassified as land, and 19.7% of actual clouds were misidentified as land, this can be overcome by increasing the quality and quantity of label datasets. Moreover, a state-of-the-art DeepLab V3+ model and the NAS (Neural Architecture Search) optimization technique can help the cloud detection for CAS500 (Compact Advanced Satellite 500) in South Korea.
Since oil spills can be a significant threat to the marine ecosystem, it is necessary to obtain information on the current contamination status quickly to minimize the damage. Satellite-based detection of marine oil spills has the advantage of spatiotemporal coverage because it can monitor a wide area compared to aircraft. Due to the recent development of computer vision and deep learning, marine oil spill detection can also be facilitated by deep learning. Unlike the existing studies based on Synthetic Aperture Radar (SAR) images, we conducted a deep learning modeling using PlanetScope optical satellite images. The blind test of the DeepLabV3+ model for oil spill detection showed the performance statistics with an accuracy of 0.885, a precision of 0.888, a recall of 0.886, an F1-score of 0.883, and a Mean Intersection over Union (mIOU) of 0.793.
Lee Chung-Sub;Lim Dong-Wook;Noh Si-Hyeong;Kim Tae-Hoon;Ko Yousun;Kim Kyung Won;Jeong Chang-Won
KIPS Transactions on Computer and Communication Systems
/
v.12
no.3
/
pp.119-126
/
2023
Sarcopenia is not well known enough to be classified as a disease in 2021 in Korea, but it is recognized as a social problem in developed countries that have entered an aging society. The diagnosis of sarcopenia follows the international standard guidelines presented by the European Working Group for Sarcopenia in Older People (EWGSOP) and the d Asian Working Group for Sarcopenia (AWGS). Recently, it is recommended to evaluate muscle function by using physical performance evaluation, walking speed measurement, and standing test in addition to absolute muscle mass as a diagnostic method. As a representative method for measuring muscle mass, the body composition analysis method using DEXA has been formally implemented in clinical practice. In addition, various studies for measuring muscle mass using abdominal images of MRI or CT are being actively conducted. In this paper, we develop an AI image segmentation model based on abdominal images of CT with a relatively short imaging time for the diagnosis of sarcopenia and describe the multicenter validation. We developed an artificial intelligence model using U-Net that can automatically segment muscle, subcutaneous fat, and visceral fat by selecting the L3 region from the CT image. Also, to evaluate the performance of the model, internal verification was performed by calculating the intersection over union (IOU) of the partitioned area, and the results of external verification using data from other hospitals are shown. Based on the verification results, we tried to review and supplement the problems and solutions.
Manual inspection of steel box girders on long span bridges is time-consuming and labor-intensive. The quality of inspection relies on the subjective judgements of the inspectors. This study proposes an automated approach to detect and segment cracks in high-resolution images. An end-to-end cascaded framework is proposed to first detect the existence of cracks using a deep convolutional neural network (CNN) and then segment the crack using a modified U-Net encoder-decoder architecture. A Naïve Bayes data fusion scheme is proposed to reduce the false positives and false negatives effectively. To generate the binary crack mask, first, the original images are divided into 448 × 448 overlapping image patches where these image patches are classified as cracks versus non-cracks using a deep CNN. Next, a modified U-Net is trained from scratch using only the crack patches for segmentation. A customized loss function that consists of binary cross entropy loss and the Dice loss is introduced to enhance the segmentation performance. Additionally, a Naïve Bayes fusion strategy is employed to integrate the crack score maps from different overlapping crack patches and to decide whether a pixel is crack or not. Comprehensive experiments have demonstrated that the proposed approach achieves an 81.71% mean intersection over union (mIoU) score across 5 different training/test splits, which is 7.29% higher than the baseline reference implemented with the original U-Net.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.137-137
/
2023
해양쓰레기는 해안의 심미적 가치 저하뿐만 아니라 생태계 파괴, 유령 어업에 따른 수산업 피해 등의 사회적·환경적 문제를 발생시키며, 그중 70% 이상은 육상 기인으로 플라스틱 및 기타 쓰레기가 주를 이루는 해외와 달리 국내의 경우 다량의 초목류를 포함하고 있다. 다양한 부유쓰레기에 대한 기존의 해양쓰레기량 추정의 한계와 하천·하구 쓰레기 수거의 효율화를 위해 해양으로 유입되는 부유쓰레기 방지를 위한 실효성 있는 대책 수립이 필요한 실정이다. 본 연구는 해양 유입 전 하천의 차단시설에 차집된 부유쓰레기의 수거 효율화 및 지속가능한 해양쓰레기 데이터 구축을 위해 AI기반의 기술을 통해 부유쓰레기 성상 분석 기법(Object Detection)과 차집량 분석 기법(Semantic Segmentation)을 활용하였다. 실제와 유사한 데이터 수집을 위해 다양한 하천 환경(정수조, 소하천, 급경사수로)에 대해 탁도(녹조, 유사), 광량, 쓰레기형상, 초목류 함량, 날씨(소하천), 유속(급경사수로) 등의 실험조건에 대하여 해양쓰레기 분류 기준 및 통계를 바탕으로 부유쓰레기 종류 선정하여 학습을 위한 데이터를 수집하였다. 학습 목적에 따라 구분하여 라벨링(Bounding box, Polygon)을 수행하고, 각 분석 기법별 전이학습을 통해 Phase 1(정수조), Phase 2(소하천), Phase 3(급경사수로) 순서로 모델을 고도화하였다. 성상 분석을 위해 YOLO v4를 활용하여 Train, Test DataSet(9:1)을 구성하고 학습 및 평가는 Iteration마다의 mAP, loss 값을 통해 비교하였으며, 학습 Phase에 따라 모델 고도화로 Test Set의 mAP 값이 성상별로 높아짐을 확인하였으며, 차집량 분석을 위해 Unet을 활용하여 Train, Test, Validation DataSet(8.5:1:0.5)을 구성하고 epoch별 IoU(intersection over Union), F1-score, loss 값을 비교하여 정성적, 정량적 평가 모두 Phase 3에서 가장 높은 성능을 확인하였다. 향후 하천 환경에서의 다양한 영양인자별 분석을 통해 주요 영향인자 도출 및 Hyper Parameter 최적화를 통한 모델 고도화로 인해 활용성이 높아질 것으로 판단된다.
Purpose: Convolutional neural networks (CNNs) have rapidly emerged as one of the most promising artificial intelligence methods in the field of medical and dental research. CNNs can provide an effective diagnostic methodology allowing for the detection of early-staged diseases. Therefore, this study aimed to evaluate the performance of a deep CNN algorithm for apical lesion segmentation from panoramic radiographs. Materials and Methods: A total of 1000 panoramic images showing apical lesions were separated into training (n=800, 80%), validation (n=100, 10%), and test (n=100, 10%) datasets. The performance of identifying apical lesions was evaluated by calculating the precision, recall, and F1-score. Results: In the test group of 180 apical lesions, 147 lesions were segmented from panoramic radiographs with an intersection over union (IoU) threshold of 0.3. The F1-score values, as a measure of performance, were 0.828, 0.815, and 0.742, respectively, with IoU thresholds of 0.3, 0.4, and 0.5. Conclusion: This study showed the potential utility of a deep learning-guided approach for the segmentation of apical lesions. The deep CNN algorithm using U-Net demonstrated considerably high performance in detecting apical lesions.
Zhai, Guanghao;Narazaki, Yasutaka;Wang, Shuo;Shajihan, Shaik Althaf V.;Spencer, Billie F. Jr.
Smart Structures and Systems
/
v.29
no.1
/
pp.237-250
/
2022
Structural health monitoring (SHM) plays an important role in ensuring the safety and functionality of critical civil infrastructure. In recent years, numerous researchers have conducted studies to develop computer vision and machine learning techniques for SHM purposes, offering the potential to reduce the laborious nature and improve the effectiveness of field inspections. However, high-quality vision data from various types of damaged structures is relatively difficult to obtain, because of the rare occurrence of damaged structures. The lack of data is particularly acute for fatigue crack in steel bridge girder. As a result, the lack of data for training purposes is one of the main issues that hinders wider application of these powerful techniques for SHM. To address this problem, the use of synthetic data is proposed in this article to augment real-world datasets used for training neural networks that can identify fatigue cracks in steel structures. First, random textures representing the surface of steel structures with fatigue cracks are created and mapped onto a 3D graphics model. Subsequently, this model is used to generate synthetic images for various lighting conditions and camera angles. A fully convolutional network is then trained for two cases: (1) using only real-word data, and (2) using both synthetic and real-word data. By employing synthetic data augmentation in the training process, the crack identification performance of the neural network for the test dataset is seen to improve from 35% to 40% and 49% to 62% for intersection over union (IoU) and precision, respectively, demonstrating the efficacy of the proposed approach.
Background/Aims: Previous artificial intelligence (AI) models attempting to segment gastric intestinal metaplasia (GIM) areas have failed to be deployed in real-time endoscopy due to their slow inference speeds. Here, we propose a new GIM segmentation AI model with inference speeds faster than 25 frames per second that maintains a high level of accuracy. Methods: Investigators from Chulalongkorn University obtained 802 histological-proven GIM images for AI model training. Four strategies were proposed to improve the model accuracy. First, transfer learning was employed to the public colon datasets. Second, an image preprocessing technique contrast-limited adaptive histogram equalization was employed to produce clearer GIM areas. Third, data augmentation was applied for a more robust model. Lastly, the bilateral segmentation network model was applied to segment GIM areas in real time. The results were analyzed using different validity values. Results: From the internal test, our AI model achieved an inference speed of 31.53 frames per second. GIM detection showed sensitivity, specificity, positive predictive, negative predictive, accuracy, and mean intersection over union in GIM segmentation values of 93%, 80%, 82%, 92%, 87%, and 57%, respectively. Conclusions: The bilateral segmentation network combined with transfer learning, contrast-limited adaptive histogram equalization, and data augmentation can provide high sensitivity and good accuracy for GIM detection and segmentation.
Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.