• Title/Summary/Keyword: international benchmark

Search Result 187, Processing Time 0.022 seconds

The Current Status of Traditional Medicine and CAM's Events Abroad and its Implications for 2013 SanCheong Expo (세계 전통의학과 CAM 엑스포 현황과 분석 - 2013 세계전통의학엑스포의 기획에 주는 시사점을 중심으로 -)

  • Kwon, Oh-Min;Park, Sang-Young;KANG, Yeonseok
    • The Journal of Korean Medical History
    • /
    • v.24 no.2
    • /
    • pp.135-143
    • /
    • 2011
  • The market of conferences and expos of traditional/ complementary and alternative medicine has not been mature enough while interests in those medicines are growing fast. Meanwhile, some related events in Europe, North America, and Asia, held on regular basis, have reached to the international level in size, such as CAMExpo The Complementary, Natural & Healthcare Show in Europe, Integrative Healthcare Symposium in North America, Ayurveda Congress & Arogya Expo in India, International Conference and Exhibition of the Modernization of Chinese Medicine & Health Products in Hong Kong. Those events have been held for 10 years or so, initiated their own features, and secured their own regular booth exhibitors and visitors. They open the homepage on the internet one or two years before their events are held and vigorously advertise their events on yearly basis. To succeed in, and bear fruits from, the 2013 World Traditional Medicine Expo in Sancheong, it is needed to analyze strong points of the events above and benchmark a practical timeline and technical road map to the 2013 Expo from them.

Detection and Localization of Image Tampering using Deep Residual UNET with Stacked Dilated Convolution

  • Aminu, Ali Ahmad;Agwu, Nwojo Nnanna;Steve, Adeshina
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.203-211
    • /
    • 2021
  • Image tampering detection and localization have become an active area of research in the field of digital image forensics in recent times. This is due to the widespread of malicious image tampering. This study presents a new method for image tampering detection and localization that combines the advantages of dilated convolution, residual network, and UNET Architecture. Using the UNET architecture as a backbone, we built the proposed network from two kinds of residual units, one for the encoder path and the other for the decoder path. The residual units help to speed up the training process and facilitate information propagation between the lower layers and the higher layers which are often difficult to train. To capture global image tampering artifacts and reduce the computational burden of the proposed method, we enlarge the receptive field size of the convolutional kernels by adopting dilated convolutions in the residual units used in building the proposed network. In contrast to existing deep learning methods, having a large number of layers, many network parameters, and often difficult to train, the proposed method can achieve excellent performance with a fewer number of parameters and less computational cost. To test the performance of the proposed method, we evaluate its performance in the context of four benchmark image forensics datasets. Experimental results show that the proposed method outperforms existing methods and could be potentially used to enhance image tampering detection and localization.

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.

Intelligent Route Construction Algorithm for Solving Traveling Salesman Problem

  • Rahman, Md. Azizur;Islam, Ariful;Ali, Lasker Ershad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.33-40
    • /
    • 2021
  • The traveling salesman problem (TSP) is one of the well-known and extensively studied NPC problems in combinatorial optimization. To solve it effectively and efficiently, various optimization algorithms have been developed by scientists and researchers. However, most optimization algorithms are designed based on the concept of improving route in the iterative improvement process so that the optimal solution can be finally found. In contrast, there have been relatively few algorithms to find the optimal solution using route construction mechanism. In this paper, we propose a route construction optimization algorithm to solve the symmetric TSP with the help of ratio value. The proposed algorithm starts with a set of sub-routes consisting of three cities, and then each good sub-route is enhanced step by step on both ends until feasible routes are formed. Before each subsequent expansion, a ratio value is adopted such that the good routes are retained. The experiments are conducted on a collection of benchmark symmetric TSP datasets to evaluate the algorithm. The experimental results demonstrate that the proposed algorithm produces the best-known optimal results in some cases, and performs better than some other route construction optimization algorithms in many symmetric TSP datasets.

Priorities And Problems In The Development Of Modern Information Technologies In Education

  • Prykhodkina, Nataliia;Tymoshko, Hanna;Zuieva, Alona;Sholokh, Olena;Noskova, Margaryta;Lebid, Yuliia
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.231-236
    • /
    • 2021
  • The article assesses the functioning of the DE system or a separate educational institution, where it can be carried out on the basis of developed criteria or on a regulatory basis. The assessment was carried out on the basis of a qualitative and quantitative nature by comparing the actual state of affairs with a certain "ideal" (educational standard), which must be defined and used as a kind of benchmark against which the assessment is made. Conducted an assessment based on a regulatory framework that represents an alternative approach. It has been emphasized that the exceptional difficulty in determining the ideal indicators (norms) of the activities of universities, it has been found that the normative approach, in which the activities of traditional and open universities are compared, taking into account the differences in social, cultural and economic conditions, is the most acceptable.

Blending of Contrast Enhancement Techniques for Underwater Images

  • Abin, Deepa;Thepade, Sudeep D.;Maitre, Amulya R.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Exploration has always been an instinct of humans, and underwater life is as fascinating as it seems. So, for studying flora and fauna below water, there is a need for high-quality images. However, the underwater images tend to be of impaired quality due to various factors, which calls for improved and enhanced underwater images. There are various Histogram Equalization (HE) based techniques which could aid in solving these issues. Classifying the HE methods broadly, there is Global Histogram Equalization (GHE), Mean Brightness Preserving HE (MBPHE), Bin Modified HE (BMHE), and Local HE (LHE). Each of these HE extensions have their own pros and cons and thus, by considering them we have considered BBHE, CLAHE, BPDHE, BPDFHE, and DSIHE enhancement algorithms, which are based on Mean Brightness Preserving HE and Local HE, for this study. The performance is evaluated with non-reference performance measures like Entropy, UCIQE, UICM, and UIQM. In this study, we apply the enhancement algorithms on 300 images from the UIEB benchmark dataset and then apply the techniques of cascading fusion on the best-performing algorithms.

A Remote Sensing Scene Classification Model Based on EfficientNetV2L Deep Neural Networks

  • Aljabri, Atif A.;Alshanqiti, Abdullah;Alkhodre, Ahmad B.;Alzahem, Ayyub;Hagag, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.406-412
    • /
    • 2022
  • Scene classification of very high-resolution (VHR) imagery can attribute semantics to land cover in a variety of domains. Real-world application requirements have not been addressed by conventional techniques for remote sensing image classification. Recent research has demonstrated that deep convolutional neural networks (CNNs) are effective at extracting features due to their strong feature extraction capabilities. In order to improve classification performance, these approaches rely primarily on semantic information. Since the abstract and global semantic information makes it difficult for the network to correctly classify scene images with similar structures and high interclass similarity, it achieves a low classification accuracy. We propose a VHR remote sensing image classification model that uses extracts the global feature from the original VHR image using an EfficientNet-V2L CNN pre-trained to detect similar classes. The image is then classified using a multilayer perceptron (MLP). This method was evaluated using two benchmark remote sensing datasets: the 21-class UC Merced, and the 38-class PatternNet. As compared to other state-of-the-art models, the proposed model significantly improves performance.

Food Detection by Fine-Tuning Pre-trained Convolutional Neural Network Using Noisy Labels

  • Alshomrani, Shroog;Aljoudi, Lina;Aljabri, Banan;Al-Shareef, Sarah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.182-190
    • /
    • 2021
  • Deep learning is an advanced technology for large-scale data analysis, with numerous promising cases like image processing, object detection and significantly more. It becomes customarily to use transfer learning and fine-tune a pre-trained CNN model for most image recognition tasks. Having people taking photos and tag themselves provides a valuable resource of in-data. However, these tags and labels might be noisy as people who annotate these images might not be experts. This paper aims to explore the impact of noisy labels on fine-tuning pre-trained CNN models. Such effect is measured on a food recognition task using Food101 as a benchmark. Four pre-trained CNN models are included in this study: InceptionV3, VGG19, MobileNetV2 and DenseNet121. Symmetric label noise will be added with different ratios. In all cases, models based on DenseNet121 outperformed the other models. When noisy labels were introduced to the data, the performance of all models degraded almost linearly with the amount of added noise.

Enhanced CNN Model for Brain Tumor Classification

  • Kasukurthi, Aravinda;Paleti, Lakshmikanth;Brahmaiah, Madamanchi;Sree, Ch.Sudha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.143-148
    • /
    • 2022
  • Brain tumor classification is an important process that allows doctors to plan treatment for patients based on the stages of the tumor. To improve classification performance, various CNN-based architectures are used for brain tumor classification. Existing methods for brain tumor segmentation suffer from overfitting and poor efficiency when dealing with large datasets. The enhanced CNN architecture proposed in this study is based on U-Net for brain tumor segmentation, RefineNet for pattern analysis, and SegNet architecture for brain tumor classification. The brain tumor benchmark dataset was used to evaluate the enhanced CNN model's efficiency. Based on the local and context information of the MRI image, the U-Net provides good segmentation. SegNet selects the most important features for classification while also reducing the trainable parameters. In the classification of brain tumors, the enhanced CNN method outperforms the existing methods. The enhanced CNN model has an accuracy of 96.85 percent, while the existing CNN with transfer learning has an accuracy of 94.82 percent.

OAPR-HOML'1: Optimal automated program repair approach based on hybrid improved grasshopper optimization and opposition learning based artificial neural network

  • MAMATHA, T.;RAMA SUBBA REDDY, B.;BINDU, C SHOBA
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.261-273
    • /
    • 2022
  • Over the last decade, the scientific community has been actively developing technologies for automated software bug fixes called Automated Program Repair (APR). Several APR techniques have recently been proposed to effectively address multiple classroom programming errors. However, little attention has been paid to the advances in effective APR techniques for software bugs that are widely occurring during the software life cycle maintenance phase. To further enhance the concept of software testing and debugging, we recommend an optimized automated software repair approach based on hybrid technology (OAPR-HOML'1). The first contribution of the proposed OAPR-HOML'1 technique is to introduce an improved grasshopper optimization (IGO) algorithm for fault location identification in the given test projects. Then, we illustrate an opposition learning based artificial neural network (OL-ANN) technique to select AST node-level transformation schemas to create the sketches which provide automated program repair for those faulty projects. Finally, the OAPR-HOML'1 is evaluated using Defects4J benchmark and the performance is compared with the modern technologies number of bugs fixed, accuracy, precession, recall and F-measure.