• Title/Summary/Keyword: interleaved iterative algorithm

Search Result 3, Processing Time 0.018 seconds

ONE NEW TYPE OF INTERLEAVED ITERATIVE ALGORITHM FOR H-MATRICES

  • Tuo, Qing;Liu, Jianzhou
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.37-48
    • /
    • 2009
  • In the theory and the applications of Numerical Linear Algebra, the class of H-matrices is very important. In recent years, many appeared works have proposed iterative criterion for H-matrices. In this paper, we provide a new type of interleaved iterative algorithm, which is always convergent in finite steps for H-matrices and needs fewer iterations than those proposed in the related works, and a corresponding algorithm for general matrix, which eliminates the redundant computations when the given matrix is not an H-matrix. Finally, several numerical examples are presented to show the effectiveness of the proposed algorithms.

  • PDF

A Low-Complexity Turbo coded BICM-ID System (Turbo coded BICM-ID의 복잡도 개선 기법)

  • Kang, Donghoon;Lee, Yongwook;Oh, Wangrok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.21-27
    • /
    • 2013
  • In this paper, we propose a low-complexity Turbo coded BICM-ID (bit-interleaved coded modulation with iterative decoding) system. A Turbo code is a powerful error correcting code with a BER (bit error rate) performance very close to the Shannon limit. In order to increase spectral efficiency of the Turbo code, a coded modulation combining Turbo code with high order modulation is used. The BER performance of Turbo-BICM can be improved by Turbo-BICM-ID using iterative demodulation and decoding algorithm. However, compared with Turbo-BICM, the decoding complexity of Turbo-BICM-ID is increased by exchanging information between decoder and demodulator. To reduce the decoding complexity of Turbo-BICM-ID, we propose a low-complexity Turbo-BICM-ID system. When compared with conventional Turbo-BICM-ID, the proposed scheme not only show similar BER performance but also reduce the decoding complexity.

Iterative Multiple Symbol Differential Detection for Turbo Coded Differential Unitary Space-Time Modulation

  • Vanichchanunt, Pisit;Sangwongngam, Paramin;Nakpeerayuth, Suvit;Wuttisittikulkij, Lunchakorn
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.44-54
    • /
    • 2008
  • In this paper, an iterative multiple symbol differential detection for turbo coded differential unitary space-time modulation using a posteriori probability (APP) demodulator is investigated. Two approaches of different complexity based on linear prediction are presented to utilize the temporal correlation of fading for the APP demodulator. The first approach intends to take account of all possible previous symbols for linear prediction, thus requiring an increase of the number of trellis states of the APP demodulator. In contrast, the second approach applies Viterbi algorithm to assist the APP demodulator in estimating the previous symbols, hence allowing much reduced decoding complexity. These two approaches are found to provide a trade-off between performance and complexity. It is shown through simulation that both approaches can offer significant BER performance improvement over the conventional differential detection under both correlated slow and fast Rayleigh flat-fading channels. In addition, when comparing the first approach to a modified bit-interleaved turbo coded differential space-time modulation counterpart of comparable decoding complexity, the proposed decoding structure can offer performance gain over 3 dB at BER of $10^{-5}$.