• Title/Summary/Keyword: interlayer bonding

Search Result 94, Processing Time 0.022 seconds

BONDING PHENOMENON IN TRANSIENT LIQUID PHASE BONDING OF NI BASE SUPERALLOY GTD-111

  • Kang, Chung-Yun;Kim, Dae-Up;Woo, In-Soo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.798-802
    • /
    • 2002
  • Metallurgical studies on the bonded interlayer of directionally solidified Ni-base superalloy GTD111 joints were carried out during transient liquid phase bonding. The formation mechanism of solid during solidification process was also investigated. Microstructures at the bonded interlayer of joints were characterized with bonding temperature. In the bonding process held at 1403K, liquid insert metal was eliminated by well known mechanism of isothermal solidification process and formation of the solid from the liquid at the bonded interlayer were achieved by epitaxial growth. In addition, grain boundary formed at bonded interlayer is consistent with those of base metal. However, in the bonding process held at 1453K, extensive formation of the liquid phase was found to have taken place along dendrite boundaries and grain boundaries adjacent to bonded interlayer. Liquid phases were also observed at grain boundaries far from the bonding interface. This phenomenon results in liquation of grain boundaries. With prolonged holding, liquid phases decreased gradually and changed to isolated granules, but did not disappeared after holding for 7.2ks at 1473K. This isothermal solidification occurs by diffusion of Ti to be result in liquation. In addition, grain boundaries formed at bonded interlayer were corresponded with those of base metal. In the GTD-ll1 alloy, bonding mechanism differs with bonding temperature.

  • PDF

Si-to-Si Electrostatic Bonding using LSG Film as an Interlayer (LSG Interlayer를 이용한 실리콘-실리콘 정전 열 접합)

  • Ju, Byeong-Gwon;Jeong, Ji-Won;Lee, Deok-Jung;Lee, Yun-Hui;Choe, Du-Jin;O, Myeong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.672-675
    • /
    • 1999
  • Si-to-Si electrostatic bonding was carried out by employing LSG interlayer instead of conventional Corning #7740 interlayer in order to improve bonding properties. The surface roughness and dielectric breakdown field of the LSG interlayers deposited on Si substrates were investigated. Also, the bonding interface, bonding strength and bonding mechanism were discussed for the electrostatically-bonded Si-Si wafer pairs having LSG interlayers.

  • PDF

Joinability of Tool Steels by TLP Bonding (천이액상확산접합에 의한 합금공구강의 접합특성)

  • 권병대;이원배;김봉수;홍태환;서창제;정승부
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.69-74
    • /
    • 2003
  • The mechanical properties of STD11 Joints by using TLP (Transient Liquid Phase Diffusion) bonding method employing MBF-30 and MBF-80 insert metals were investigated with concerning to the microstructural change. TLP bonding of STD 11 was carried out at 1323∼1423K for 0.6ks∼3.6ks in vacuum. The microstructure and the element distribution of the interlayer between tool steels and insert metals showed specific feature with bonding conditions. It was found that the width of the interlayer increased at initial bonding stage. However, the width of interlayer showed nearly constant value during the isothermal solidification. After isothermal solidification was completed, the joint showed homogeneous element distribution and similar microstructure with base metal because of the grain boundary migration to the bonded interlayer. The bonding strength measured by a tensile test has been varied with the bonding conditions. The maximum joint strength, 760MPa, was obtained with the condition of 1423K for 1.2ks using MBF30 insert metal in this experiment.

Characterization of TLP Bonded of Magnesium AZ31 Alloy using a Nickel Interlayer (Ni 삽입재를 사용한 마그네슘 AZ31 합금의 TLP접합 특성평가)

  • Jin, Yeung Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.113-119
    • /
    • 2013
  • The transient liquid phase (TLP) bonding was used to fabricate autogenous joints in a magnesium alloy AZ31 with the aid of a pure Ni interlayer. A $13{\mu}m$ thick pure Ni foil was used in order to form a Mg-Ni eutectic liquid at the joint interface. The interface of reaction and composition profiles were investigated as a function of bonding time using a pressure of 0.16 MPa and a bonding temperature of $515^{\circ}C$. The quality of the joints produced was examined by metallurgical characterization and the joint microstructure developed across the diffusion bonds was related to changes in mechanical properties as a function of the bonding time.

Transient Liquid Phase Bonding of Directionally Solidified Ni Base Superalloy, GTD-111(I) - Bonding Phenomena and Mechanism - (일방향응고 Ni기초내열합금 GTD-111의 천이액상확산접합(I))

  • 강정윤;권민석;김인배;김대업;우인수
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.82-88
    • /
    • 2003
  • The bonding phenomenon and mechanism in the transient liquid phase bonding(TLP Bonding) of directionally solidified Ni base superalloy, GTD-111 was investigated. At the bonding temperature of 1403K, liquid insert metal was eliminated by isothermal solidification which was controlled by the diffusion of B and Si into the base metal and solids in the bonded interlayer grew epitaxially from mating base metal inward the insert metal. The number of grain boundaries formed at the bonded interlayer was corresponded with those of base metal. The liquation of grain boundary and dendrite boundary occurred at 1433K. At the bonding temperature of 1453K which is higher than liquation temperature of grain boundary, liquids of the Insert metal were connected with liquated grain boundaries and compositions in each region mixed mutually. In Joints held for various time at 1453t phases formed at liquated grain boundary far from the interface were similar to those of bonded interlayer. With prolonged holding time, liquid phases decreased gradually and liquids of continuous band shape divided many island shape. But liquid phases did not disappeared after holding for 7.2ks at 1453k. Isothermal solidification process at the bonding temperature which is higher than the liquation temperature of the grain boundary was controlled by diffusion of Ti to be result in liquation than B or Si. in insert metal. (Received January 15, 2003)

The Bonding Strength Characteristic of the Filler Metal Powder on the TLP Bonded Region of Superalloy GTD-111DS (일방향 초내열합금 GTD-111DS에서 삽입금속 분말에 따른 천이액상확산접합부의 접합강도 특성)

  • Oh, In-Seok;Kim, Gil-Moo;Moon, Byeong-Shik
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.45-50
    • /
    • 2007
  • The Ni-base superalloy GTD111 DS is used in the first stage blade of high power land-based gas turbines. Advanced repair technologies of the blade have been introduced to the gas turbine industry over recent years. The effect of the filler metal powder on Transient Liquid Phase bonding phenomenon and tensile mechanical properties was investigated on the GTD111 DS superalloy. At the filler metal powder N series, the base metal powders fully melted at the initial time and a large amount of the base metal near the bonded interlayer was dissolved by liquid inter metal. Liquid filler metal powder was eliminated by isothermal solidification which was controlled by the diffusion of B into the base metal. The solids in the bonded interlayer grew from the base metal near the bonded interlayer inward the insert metal during the isothermal solidification. The bond strength of N series filler metal powder was over 1000 MPa. and ${\gamma}'$ phase size of N series TLP bonded region was similar with base metal by influence of Ti, Al elements. At the insert metal powder M series, the Si element fluidity of the filler metal was good but microstructure irregularity on bonded region because of excessive Si element. Nuclear of solids formed not only from the base metal near the bonded interlayer but also from the remained filler metal powder in the bonded interlayer. When the isothermal solidification was finished, the content of the elements in the boned interlayer was approximately equal to that of the base metal. But boride and silicide formed in the base metal near the bonded interlayer. And these boride decreased with the increasing of holding time. The bond strength of M series filler metal powder was about 400 MPa.

Electrostatic bonding between Si and ITO-coated #7059 glass substrates (실리콘 기판과 ITO가 코팅된 #7059 유리 기판간의 정전 열 접합)

  • Ju, Hyeong-Kwon;Chung, Hoi-Hwan;Kim, Young-Cho;Han, Jeong-In;Cho, Kyoung-Ik;Oh, Myung-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.211-217
    • /
    • 1998
  • Si and ITO-coated #7059 glass wafers were electrostatically bonded by employing #7740 interlayer. It was inferred that the thermionic- electrostatic migration of $Na^{+}$ ions in the #7740 interlayer played an important role in the bonding process through SIMS analysis. The temperature and voltage required for reliable electrostatic bonding were in the range of $180{\sim}200^{\circ}C$ and $50{\sim}70V_{dc}$(10min), respectively. The low temperature Si-ITO coated glass bonding can be effectively applied to the packaging of field emission devices.

  • PDF

Orthotropic sandwich plates with interlayer slip and under edgewise loads

  • Hussein, R.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.2
    • /
    • pp.153-166
    • /
    • 2004
  • An elasticity solution for sandwich plates assembled with non-rigid bonding and subjected to edgewise loads is presented. The solution satisfies the equilibrium equations of the face and core elements, the compatibility equations of stresses and strains at the interfaces, and the boundary conditions. To investigate the effects of bonding stiffnesses on the responses of sandwich plates, numerical evaluations are conducted. The results obtained have shown that the bonding stiffness, up to a certain level, has a strong effect on the plate mechanical response. Beyond this level, the usual assumption of perfect bonding used in classical theories is quite acceptable. An answer to what constitutes perfect bonding is found in terms of the ratio of the core stiffness to the bonding stiffness.

Sodalime-sodalime Electrostatic Bonding using Amorphous Silicon Interlayer and Its Application to FEA Packging (비정질 실리콘 박막을 이용한 Sodalime-Sodalime 정전 열 접합 및 FEA Packaging 응용)

  • Ju, Byeong-Kwon;Lee, Duck-Jung;Choi, Woo-Beom;Kim, Young-Cho;Lee, Nam-Yang;Oh, Myung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.656-661
    • /
    • 1999
  • As a fundamental study for FED tubeless packaging, sodalime-sodalime electrostatic bonding was performed by using on the developed bonding mechanism. Thebonding properties of the bonded sodalime-sodalime structure were investigated through SEM and SIMS analyses. Mo-tip FEA was vacuum-packaged by the developed bonding process and the packaged device generated the field emission current.

  • PDF

A Study on Development of Insert Metal for Liquid Phase Diffusion Bonding of Fe Base Heat Resistance Alloy (Fe 기내열합금의 액상확상접합용 삽입금속의 개발에 관한 연구)

  • 강정윤;김인배;이상래
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.147-156
    • /
    • 1995
  • The change of microstructure in the bonded interlayer and tensile properties of joints were studied for liquid phase diffusion bonding using STS-310 and Incoloy-825 as base metal and base metal+B alloy as insert inetal. Main experimental results obtained in this study are as follows. 1) The optimum amount of B addition into the insert metal was found to be about 4mass%. 2) When isothermal solidification was completed, the microstructure in the bonded interlayer was the same with that of the base metal because of the grain boundary migration in the bonded interlayer. 3) All of the tensile specimen fractured at base metal and joints bonded at optimum condition exhibited tensile properties in excess of base metal requirements. 4) It was determined that fine car-borides and bordes such as M$_{23}$(C,B)$_{6}$, Cr$_{2}$B, and CrB in STS-310S and TiB in Incoloy-825 exist at the grain boundary around bonded interlayer. These precipitates almost disappeared after homogenizing treatment at 1373K for 86.4ks.s.

  • PDF